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Abstract
It is well documented that energy balance and other remote sensing-based evapo-
transpiration (ET) models face greater uncertainty over water-limited tree-grass 
ecosystems (TGEs), representing nearly 1/6th of the global land surface. Their dual 
vegetation strata, the grass-dominated understory and tree-dominated overstory, 
make for distinct structural, physiological and phenological characteristics, which 
challenge models compared to more homogeneous and energy-limited ecosystems. 
Along with this, the contribution of grasses and trees to total transpiration (T), along 
with their different climatic drivers, is still largely unknown nor quantified in TGEs. 
This study proposes a thermal-based three-source energy balance (3SEB) model, 
accommodating an additional vegetation source within the well-known two-source 
energy balance (TSEB) model. The model was implemented at both tower and conti-
nental scales using eddy-covariance (EC) TGE sites, with variable tree canopy cover 
and rainfall (P) regimes and Meteosat Second Generation (MSG) images. 3SEB ro-
bustly simulated latent heat (LE) and related energy fluxes in all sites (Tower: LE RMSD 
~60  W/m2; MSG: LE RMSD ~90  W/m2), improving over both TSEB and seasonally 
changing TSEB (TSEB-2S) models. In addition, 3SEB inherently partitions water fluxes 
between the tree, grass and soil sources. The modelled T correlated well with EC T 
estimates (r > .76), derived from a machine learning ET partitioning method. The T/ET 
was found positively related to both P and leaf area index, especially compared to 
the decomposed grass understory T/ET. However, trees and grasses had contrasting 

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0003-0222-8706
https://orcid.org/0000-0003-4250-6424
https://orcid.org/0000-0002-0198-1424
https://orcid.org/0000-0001-5727-4350
https://orcid.org/0000-0003-3546-8407
https://orcid.org/0000-0002-0726-7141
https://orcid.org/0000-0002-4663-2420
https://orcid.org/0000-0001-8346-5417
https://orcid.org/0000-0002-9095-8807
https://orcid.org/0000-0002-4619-8361
https://orcid.org/0000-0003-3496-4919
https://orcid.org/0000-0002-5563-8461
mailto:vicentefelipe.burchard@cchs.csic.es
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16002&domain=pdf&date_stamp=2021-12-02


1494  |    BURCHARD-LEVINE et al.

1  |  INTRODUCTION

Climate models project semi-arid tree-grass ecosystems (TGEs), 
such as savannas, to be disproportionately sensitive to global land 
and climate change (Bond et al., 2003; Sala et al., 2000). Along with 
this, long-term water, carbon and energy flux data are notably less 
available in arid and semi-arid ecosystems compared to humid or 
mesic systems (Biederman et al., 2017). Remote sensing and mod-
elling alleviate the relative lack of data, however, these are often 
poorly constrained and/or do not sufficiently represent their more 
complex heterogeneous features (Whitley et al., 2017). By contrast, 
global and regional-scale studies highlighted the dominant role that 
TGEs and other semi-arid ecosystems play in the global biogeochem-
ical cycle, being the main contributor to the trend and inter-annual 
variability of global carbon and water fluxes (Ahlström et al., 2015; 
Poulter et al., 2014). These regions are largely water-limited, as op-
posed to energy limited, and have unique seasonal and phenologi-
cal characteristics that are much more coupled to water availability 
(Baldocchi & Xu, 2007; Higgins et al., 2011). As climate change sce-
narios predict increases in drought frequency and severity (Sheffield 
& Wood, 2008; Wang, 2005), an improved understanding of these 
TGEs is critical to not only better manage their limited hydrological 
resources, but also due to their important links with the global car-
bon cycle.

Evapotranspiration (ET), the combination of the abiotically driven 
surface evaporation and biotic transpiration of vegetation, is an im-
portant proxy to determine drought events (e.g., González-Dugo 
et al., 2021). It is a major flux of the water cycle, often more than 
90% of incoming annual precipitation (P) in semi-arid catchments 
(García et al., 2013), and of the surface energy balance (SEB) as la-
tent heat flux (LE). Eddy-covariance (EC) flux tower networks such 
as FLUXNET (Baldocchi, 2020; Chu et al., 2017; Running et al., 1999) 
provide LE observations at numerous sites worldwide. Although 
the prevalent lack of energy balance closure (e.g., Stoy et al., 2013) 
is generally attributed, at least partly, to an underestimation of LE 
(Foken et al., 2011; Leuning et al., 2012). Since EC measurements 
only offer information over a footprint of several hundred meters, 
remote sensing is the most feasible source to obtain spatially distrib-
uted global and regional ET estimates (Glenn et al., 2007). Among 
them, SEB models find a good compromise between being physically 

based, but without needing extensive data inputs nor parameters to 
constrain them (Kustas & Anderson, 2009). For this reason, regional 
and global ET products widely use SEB models (Allen et al., 2015; 
Anderson et al., 2020; Guzinski et al., 2020; Senay et al., 2013). 
These models compute ET as the residual of the energy balance, 
where the available energy (AE), the difference between net radi-
ation (Rn) and ground heat flux (G), is partitioned between sensible 
heat (H) and LE fluxes. SEB models exploit the thermal infrared re-
gion (TIR; 8–14 µm) to retrieve the land surface temperature (LST), 
using it as the main boundary condition to give a proxy on root-zone 
soil moisture and vegetation status.

There are several types of thermal-based SEB models (e.g., Allen 
et al., 2007; Bastiaanssen, 2000; Norman et al., 1995; Su, 2002). 
They largely differ in how they address the difference between the 
radiometric (LST) and aerodynamic (T0) temperature. ‘Single-source’ 
models treat the surface as a single composite layer and may use 
an additional excess resistance term (Lhomme et al., 1997; Verhoef 
et al., 1997) and/or apply a local calibration procedure that is con-
strained by end-member pixels (e.g., Allen et al., 2007; Bastiaanssen, 
2000). However, these adjustments are often highly parameterized 
(Boulet et al., 2015), need local calibration (Kustas et al., 2016) or 
rely on certain assumptions being met at the area of interest. A 
‘dual-source’ approach instead decouples the surface temperature 
and energy exchange into vegetation and soil components, consider-
ing the directional effects of the TIR sensor observation (Anderson 
et al., 1997; Boulet et al., 2015; Norman et al., 1995, 2003). This 
more physically based formulation avoids the need for large empiri-
cal adjustments and more adequately represents sparse vegetation 
cover, common in semi-arid ecosystems. The two-source energy bal-
ance (TSEB) model (Kustas & Norman, 1999a; Norman et al., 1995) 
has been robustly applied in diverse landscapes, including for water-
stressed conditions (e.g., Gonzalez-Dugo et al., 2009; Guzinski et al., 
2020; Kustas et al., 2019; Li et al., 2019b; Timmermans et al., 2007).

However, ET models show limitations in more structurally 
complex landscapes, such as TGEs (e.g., Andreu et al., 2018; 
Burchard-Levine et al., 2020; Cleugh et al., 2007; Majozi et al., 
2017; Ramoelo et al., 2014). TGEs represent about 1/6th of the 
Earth's surface (Sulla-Menashe et al., 2019) and are a prominent 
land cover within semi-arid regions. Their scattered (or open) tree 
overstory superimposing a continuous herbaceous understory 

relations with respect to monthly P. These results demonstrate the importance in 
decomposing total ET into the different vegetation sources, as they have distinct 
climatic drivers, and hence, different relations to seasonal water availability. These 
promising results improved ET and energy flux estimations over complex TGEs, which 
may contribute to enhance global drought monitoring and understanding, and their 
responses to climate change feedbacks.

K E Y WO RD S
3SEB, ecohydrology, evapotranspiration, phenology, remote sensing, surface energy balance, 
transpiration, tree-grass ecosystem, TSEB
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have very different structural and phenological characteristics. 
These features, combined with the complex non-linear relation-
ship between model parameters and flux output, cause for greater 
model uncertainty (Burchard-Levine et al., 2020, 2021). To im-
prove ET simulations through a two-source perspective, Burchard-
Levine et al. (2020) proposed seasonally changing TSEB (TSEB-2S) 
to accommodate the contrasting phenology of trees and grasses. 
In a similar Mediterranean TGE, Andreu et al. (2018) calibrated the 
initial potential transpiration estimate in TSEB and adjusted the 
wind profile scheme to incorporate the effects of both the over-
story and understory on wind turbulence. However, whilst these 
adjustments improved the flux estimations in TGEs, they do not 
directly account for the effect of the dual vegetation layer, limiting 
their applicability to other TGE sites.

To overcome these limitations, this study proposes a remote 
sensing-based three-source energy balance (3SEB) model, integrat-
ing the tree-grass-soil layers present in TGEs within its model struc-
ture. The inherent decoupling of fluxes across these layers seeks to 
improve the understanding of transpiration (T) and plant water use 
efficiency, along with their relation to water availability and climate 
change. This also provides a framework to quantify the different 
tree and grass contributions to T, with currently very little avail-
able knowledge in this respect, especially at the ecosystem scale. 
EC measurements benchmarked 3SEB at four TGE sites located in 
Australia, Spain (2) and the USA. The natural gradient between sites, 
including large variability in tree cover (19%–48%), climate (annual 
rainfall (P): 300 to 850 mm/y) and physiology (evergreen vs decidu-
ous trees), required examining the T/ET relation with P and the leaf 
area index (LAI). In addition, TSEB (Norman et al., 1995) and TSEB-2S 
(Burchard-Levine et al., 2020) simulations were evaluated against 
3SEB. Furthermore, as a proof-of-concept, 3SEB was implemented 
at a quasi-global scale using data from the Spinning Enhanced Visible 
and Infrared Imager (SEVIRI) onboard Meteosat Second Generation 

(MSG) satellites. The model outputs were produced for TGE pixels 
within the MSG extent (~Africa, Europe and parts of Asia and South 
America) and evaluated over three EC sites in Spain, Senegal and 
South Africa.

2  | METHODS

2.1  |  Three-­source energy balance (3SEB) model 
structure

The 3SEB model structure is based on the TSEB (Norman et al., 
1995) surface resistance and energy balance equations. A vegeta-
tion layer is added by 3SEB to the TSEB model scheme to account 
for the dual vegetation layers. The original TSEB formulation pre-
sented both the ‘series’ and ‘parallel’ formulations to describe the 
soil-vegetation-atmosphere interactions (Norman et al., 1995). 
The ‘parallel’ approach portrays no interaction between the soil/
substrate and vegetation components, with both components in-
teracting directly with the atmosphere. By contrast, the ‘series’ 
formulation assumes interaction between the two sources with 
both contributing to the temperature in the canopy air space (i.e., 
aerodynamic temperature) (Kustas & Norman, 1999b). The ‘paral-
lel’ model should not be confused with the ‘patch’ model as de-
scribed in Lhomme et al. (2012), where the surface is portrayed as 
‘patches’ of vegetation and soil/substrate that are fully uncoupled 
and act independently of each other (Kustas & Norman, 1999b; 
Lhomme et al., 2012). Within the ‘parallel’ resistance framework, 
the vegetation source still has an influence on the wind speed 
attenuation below the canopy, and the radiation transmitting 
through the canopy towards the soil surface (Kustas & Norman, 
1999b). A combined ‘parallel-series’ three-source modelling 
approach is proposed here (Figure 1).

F IGURE  1 The three-source energy 
balance (3SEB) model scheme. Refer to 
the text for acronym definitions [Colour 
figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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Assuming blackbody emissivity, LST is partitioned between soil 
(Tsoil), understory (Tun) and overstory vegetation (Tov) temperatures 
as follows:

where Tsub is the understory vegetation + soil substrate (sub) tem-
perature (K); f(�), c is the fraction of vegetation (c for either under-
story, un, or overstory, ov) observed by the sensor and estimated as: 
f(�),c = 1 − exp

(

− kbcΩcFc
)

, where F is the local LAI (m2/m2); Ω is the 
clumping index (-), and kb is the beam extinction coefficient described 
in Campbell and Norman (1998). Section S1 in supplementary material 
(SI) describes Ω and kb estimations. Using this approach, the energy 
balance is decoupled between the three sources:

where LE is the latent heat flux (W m−2) and G is the soil heat flux 
(W m−2). Using the layer approach (Lhomme et al., 2012), the fluxes 
of each source sum up to obtain the total bulk surface flux (i.e., 
Fl = Flov + Flun + Flsoil, where Fl represents the energy fluxes, either Rn, 
LE or H). The radiative transfer model (RTM) described in Chapter 15 
of Campbell and Norman (1998), which was slightly adapted to con-
sider multiple vegetation layers (see Section S1 in SI), simulated the 
radiation transmission through the canopies. G is estimated through 
the approach of Santanello and Friedl (2003). To solve the system of 
equations, a two-step approach is applied. First, the surface is treated 
as a parallel (i.e., uncoupled) tree-substrate system to obtain Hov and 
Hsub using the heat transport equation (Equations 3.1, 3.2):

where �Cp is the volumetric heat capacity of air (J m−3 K−1); RA is the 
aerodynamic resistance to heat transfer based on the Monin-Obukhov 
similarity theory (Eq. S9 in SI) and RSub is the resistance to heat transfer 
in the surface boundary layer above substrate layer (s m−1) (Eq. S10 
in SI). Subsequently, Hun and Hsoil are estimated through a series (i.e., 
coupled) approach (Equations 4.1, 4.2, 4.3).

where TAC is the air temperature in the canopy space (K) and is equiva-
lent to the aerodynamic temperature; RX is the bulk canopy resistance 
to heat transfer (s m−1; Eq. S11) and RS is the resistance to heat transfer 
in the boundary layer above the soil layer (s m−1; Eq. S10). Equation 
3.2 is inverted to estimate Tsub, which serves as the boundary condi-
tion to derive Tun and Tsoil in Equation 1.2. The three-source resistance 
scheme in Figure 1 is based on the resistance formulation described in 
Appendix B of Norman et al. (1995).

Since Tov, Tun and Tsoil are unknown a priori, the Priestley-Taylor 
(PT) formulation, as in Norman et al. (1995), computes a first esti-
mate of the canopy LE and H for both overstory and understory 
using:

where LEc is the initial canopy transpiration estimate (W m−2); �PT is 
the PT coefficient (default is 1.26) (-), defined in this case only for the 
vegetation canopy component (Agam et al., 2010; Kustas & Anderson, 
2009); fg,c is the green vegetation fraction and hence actively trans-
piring (-); ∆ is the slope of the saturation vapour pressure curve (kPa 
K−1) at air temperature (TA); γ is the psychrometric constant (kPa K−1). 
The subscript c here refers to the understory or overstory vegetation 
component.

The PT formulation initializes the model to solve the system 
of equations. However, this assumes the canopy is transpiring 
at a potential rate (without water stress). Whilst the vegetation 
canopy behaves more conservatively compared to the bulk sur-
face (Agam et al., 2010), if the plant is stressed, the PT equation 
overestimates LE at the canopy level, underestimating the can-
opy temperature. This induces an overestimation of soil and sub-
strate temperatures and, thus, Hsub∕soil to conserve the total surface 
temperature (Equations 1.1-1.2). As such, to preserve the energy 
balance (Equations 2.1-2.3), this would produce a negative soil or 
substrate LE (i.e., condensation), which is considered unrealistic for 
daytime conditions. Therefore, an iteration procedure reduces �PT 
to mimic water stress until there is conservation in the radiomet-
ric and energy balance under feasible bounds (i.e., non-negative 
daytime component LE). This procedure is implemented separately 
by 3SEB for the overstory-substrate and the understory-soil sys-
tems since it is expected that each vegetation layer experiences 
water stress differently, both in terms of magnitude and timing. As 
such, the understory-soil layer applies the PT formulation consid-
ering Tsub as the main boundary condition (Equations 1.2 and 3.2). 
The overstory-substrate uses LST as the main boundary condition 
(Equations 1.1 and 3.1). Refer to the model source code for further 
details (https://github.com/Vicen​teBur​chard/​3SEB).

(1.1)LST =
[

f(�),ovT
4
ov
+
(

1− f(�),ov
)

T4
sub

]1∕4

(1.2)Tsub =
[

f(�),unT
4
un
+
(

1− f(�),un
)

T4
soil

]1∕4

(2.1)LEov = Rnov − Hov

(2.2)LEun = Rnun − Hun

(2.3)LEsoil = Rnsoil − Hsoil − G

(3.1)Hov =
�Cp

(

Tov − TA
)

RA

(3.2)Hsub =
�Cp

(

Tsub − TA
)

RA+Rsub

(4.1)Hun =
�Cp

(

Tun − TAC
)

RX

(4.2)
Hsoil =

�Cp

(

Tsoil − TAC
)

Rs

(4.3)Hsub = Hun + Hsoil =
�Cp

(

TAC − TA
)

RA

(5.1)LEc = �PTfg

(

Δ

Δ + �

)

Rnc

(5.2)Hc = Rnc − LEc = Rnc

[

1 − �PTfg,c

(

Δ

Δ + �

)]

https://github.com/VicenteBurchard/3SEB
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A combination of proximal and satellite RS data forced the 3SEB 
model. All sites collected half-hourly proximal TIR measurements. 
This approach is more efficient than daily or bi-weekly satellite 
near-noon overpasses since the latter does not capture the entire 
temporal and seasonal dimension and requires clear-sky conditions. 
However, the model implementation would essentially be the same 
using spatially discrete LST imagery (see Section 2.3.3). LAI is an-
other important variable that dictates the radiation transmission be-
tween the various layers (Campbell & Norman, 1998; Section S1 in 
SI). It also characterizes the roughness and aerodynamic resistance 
of the surface (Norman et al., 1995; Section S2 in SI). In this study, 
moderate resolution imaging spectroradiometer (MODIS) onboard 
the Terra and Aqua satellite platforms retrieved LAI and fg, key for 
the initial transpiration estimate (Equations 5.1, 5.2). Section 2.3.1 
(and furthermore in Section S4 of the SI) describes details on LST, 
LAI and fg retrievals. In addition, the respective sites collected mete-
orological data to characterize the turbulent and atmospheric con-
ditions (Section 2.2). Other auxiliary inputs included the vegetation 
structure (height, cover and leaf width) (Table 1) and parameters re-
lated to the resistance and radiation transfer sub-models (Sections 
S1 and S2 in SI).

2.2  |  Study sites

Four experimental TGE EC sites across three continents evalu-
ated the 3SEB model: Majadas de Tiétar (ES-LM1) and Albuera 
(ES-Abr) in Spain, the Tonzi Ranch in California, USA (US-Ton) and 
Dry River in Australia (AU-Dry) (Figure 2). At all sites, P is mostly 
concentrated during specific wet seasons and all suffer a sustained 
seasonal drought period. The wet season largely falls during autumn 
(~October–November) and spring (~March–April), except for AU-Dry 
(~December–February). The sites vary in P and LAI (Figure 3), from 
the relatively arid ES-Abr (P ~300 mm/year) with large seasonal range 
in LAI (~0.4–2 m2/m2) to the more humid AU-Dry (P ~850 mm/year), 
with comparatively less range in LAI (~0.8–1.8 m2/m2). The peak bio-
mass period occurs in ~April—May, but is slightly earlier for AU-Dry 
in ~February—March (Figure 3). The dry season occurs roughly in 
~June—August for all sites when the understory herbaceous species 
largely senesce.

Distinct tree overstory and grass understory compose all TGE 
sites with variable vegetation composition and density. ES-LM1 is 
a managed agro-forested area in central Spain, known as dehesa 
(El-Madany et al., 2018), where evergreen Holm Oak (Quercus ilex. L.) 
represent roughly 20% of the surface and stand at a mean height of 
8.7 m (Bogdanovich et al., 2021; El-Madany et al., 2020). At ~200 km 
south, ES-Abr is a more arid dehesa also composed of Holm Oaks, 
but with a slightly larger tree fractional cover (24%) and lower mean 
canopy height (6.6m) (El-Madany et al., 2020). In US-Ton, an oak sa-
vanna woodland located on the lower foothills of the Sierra Nevada 
Mountains in California, USA (Baldocchi et al., 2010), deciduous Blue 
Oaks (Quercus douglasii H. & A) with a mean canopy height of 9.4 m 
dominate the overstory, covering 48% of the surface. Evergreen TA
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eucalyptus species (Eucalyptus tetrodonta F. Muell, Eucalyptus ter-
minalis F. Muell and Eucalyptus dichromophloia F. Muell) standing at 
12.3  m mean height cover roughly 25% of the surface in AU-Dry 
(Hutley et al., 2011; Sea et al., 2011).

All four EC sites have similar instrumentation to force and evalu-
ate 3SEB, including a three-dimensional sonic anemometer (Gill 
LTD1), along with infrared gas analysers (Li-Cor Inc.) and four-
component net radiometers (CNR4, Kipp and Zonen). Refer to the 
respective reference of each site for more details (Table S1). Half-
hourly meteorological and flux data were collected for the four-year 
simulation period shown in Figure 3 and listed in Table S1, using hy-
drological years (1 October to 30 September) to fully capture the 
main wet and growing seasons. These include incoming shortwave 
(SWin) and longwave (LWin) irradiance, outgoing longwave irradiance 
(LWout), TA, relative humidity (RH), and wind speed (u). Additionally, 
in situ energy balance observations of Rn, LE, H and G benchmarked 
the model performance. Allocating residuals to the observed LE en-
sured the energy balance closure (i.e., 

∑

[LE + H]∕
∑

[RN − G]), which 
ranged from 0.76 and 0.83 across sites, with the assumption that er-
rors in LE are larger than H (e.g., Foken et al., 2011), as applied in 
similar studies (e.g., Burchard-Levine et al., 2020; Guzinski et al., 
2014; Kustas et al., 2012).

In addition to these four sites, two other EC sites were also 
used to benchmark the 3SEB model when applied at the continen-
tal scale (see section 2.3.3). These were the Dhara site in Senegal 
(SN-Dhr; Tagesson et al., 2013; 2015) and the Skukuza site in South 

Africa (ZA-Kru; Archibald et al., 2009; Scholes, 2013). Datasets 
were collected from the FLUXNET2015 release (Pastorello et al., 
2020).

2.3  |  The 3SEB model 
implementation and evaluation

2.3.1  |  Model set-up

Each site implemented 3SEB at the half-hourly time step for a four-
year period (Table S1). LST and meteorological forcing (i.e., SWin, TA, 
u, RH) were incorporated at this time step, whilst vegetation bio-
physical variables (i.e., LAI, fg) were forced daily (see Section S4.2 
of SI).

LST was estimated from LW radiation measurements from 
CNR4 (Kipp & Zonen, Delft, Netherlands) radiometers (see Section 
S4.1 in SI). The MODIS LAI v006 (MCD15A3H) product provided 
green LAI at 500  m spatial resolution (LAIMODIS). Since the non-
green or non-photosynthetically active vegetation (i.e., dead 
leaves/plants or wooded material) influence the aerodynamic and 
radiative transfer, total LAI (LAItotal) or plant area index (PAI) would 
be more appropriate but no global products were available. The 
Gutman and Ignatov (1998) approach, based on the normalized 
difference vegetation index (NDVI), was estimated fg (see Section 
S4.2 in SI). NDVI time series over the pixel centred of each site was 
retrieved from the MODIS daily Nadir BRDF-adjusted Reflectance 
v006 (MCD43A4) product. Pacheco-Labrador et al. (2017) 
demonstrated the 500 × 500 m pixel to adequately represent the 
EC flux footprint area. The 3SEB distinguishes and separates total 

 1The use of trade, firm, or corporation names in this article is for the information and 
convenience of the reader. Such use does not constitute official endorsement or 
approval by the US Department of Agriculture or the Agricultural Research Service of 
any product or service to the exclusion of others that may be suitable.

F IGURE  2 Tower locations that implemented and evaluated 3SEB at the site scale [Colour figure can be viewed at wileyonlinelibrary.com]
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LAI and fg for each vegetation layer. The decomposition of these 
vegetation indices between overstory and understory vegetation, 
along with other processing details, are provided in Section S4.2 
of the SI.

EC measurements benchmarked the 3SEB flux outputs (H, 
LE, Rn, and G) at both half-hourly and daily scales. Additionally, 
the 3SEB ET partitioning (T/ET) was evaluated against the tran-
spiration estimation algorithm (TEA) (Nelson et al., 2018). TEA is 
a data-driven method, which uses the carbon (i.e., gross primary 
production, (GPP)) and water (i.e., ET) relations to decouple the T 
signal from ET. For more details on the TEA method, see Nelson 
et al. (2018, 2020). ES-LM1 and US-Ton also collected EC flux 
measurements below the tree overstory to further evaluate the 
modelled flux partitioning.

TSEB (Norman et al., 1995) and TSEB-2S (Burchard-Levine et al., 
2020) simulations were additionally performed for comparison pur-
poses. Since TSEB has only one vegetation source assumed in the 
model structure, effective input and parameter values depict the 
mixed surface (Table 1). TSEB-2S adjusts the parameterization of 

the vegetation source depending on the assumed dominant vegeta-
tion source, whether it is the grass-dominated (understory-soil sys-
tem) phase or the tree-dominated (overstory-soil) drought phase. 
For more information on TSEB-2S, refer Burchard-Levine et al. 
(2020).

Table 1 lists the structural vegetation parameters implemented 
in 3SEB and TSEB. TSEB-2S applies the ‘understory’ or ‘overstory’ 
configuration depending on the phenological phase (Section S5 in 
SI). To clarify, fc is different to f(�),ov and f(�),un from Equations 1.1 and 
1.2. The fc mostly characterizes the distribution and canopy clump-
ing (Eq. S4.1), whilst f(�),ov and f(�),un, functions of LAI and sensor 
viewing angle, are the vegetation fraction viewed by the sensor and 
partitions the temperature contribution from the different sources. 
For example, the understory fc (i.e., fc,un) is maintained constant at 1 
throughout the simulation period since the understory rather ho-
mogeneously covers the entire soil surface, even during the dry pe-
riod (Table 1). Nevertheless, fg quantifies the vegetation percentage 
that is photosynthetically active and, by contrast, varies seasonally 
(Figure S1).

F IGURE  3 Rainfall (P), half-hourly air temperature (TA,hh), daytime mean temperature (TA,mean) and leaf area index (LAI) time series during 
the simulation period for AU-Dry, ES-Abr, ES-LM1 and US-Ton [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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2.3.2  |  Model performance evaluation

In situ LAI measurements evaluated the MODIS-based understory 
(LAIun) and overstory (LAIov) LAI decomposition, as required by 3SEB. 
These data were only available for ES-LM1 and US-Ton. In ES-LM1, 
the retrieved LAIun were benchmarked against measured understory 
LAI from 24 field campaigns between 31 October 2014 and 16 July 
2018 through the FLUXPEC (http://www.lineas.cchs.csic.es/fluxp​ec/) 
and SynerTGE (http://www.lineas.cchs.csic.es/syner​tge/) projects. In 
this site, destructive sampling with the separation of green/non-green 
material and leaf scanning acquired in situ LAI. The mean of ~20–
30 samples acquired during each campaign represented the ecosystem 
LAIun. Details on field protocols for ES-LM1 are available in Melendo-
Vega et al. (2018) and Mendiguren et al. (2015). For US-Ton, in situ 
LAIun was collected from the Biological, Ancillary, Disturbance, and 
Metadata (BADM) dataset available through AMERIFLUX. A Li-cor (LI-
3100C) area meter (https://www.licor.com/env/produ​cts/leaf_area/
LI-3100C/) from 400 cm2 sampling areas measured LAI (Baldocchi & 
Ma, 2013). In situ LAIun measurements in US-Ton acquired on 33 dates 
from 10 February 2010 to 08 May 2013 were outside the simulation 
period, but nonetheless served to benchmark the retrieved LAIun.

The root mean square deviation (RMSD), mean bias (bias), the 
Nash-Sutcliffe efficiency index (NSE) and the Pearson´s correlation 
coefficient (r) quantified the modelling performance. In addition, 
mean daily error plots inspected the seasonal trends of model un-
certainty. The standard deviation (�) of mean daily errors quantified 
the intra-annual variability, whilst the mean range of errors for each 
day of year evaluated the inter-annual variability (IAV).

The estimated T/ET, including separating the understory (Tun) 
and overstory (Tov) transpiration, were related to monthly and annual 
P. In addition, the Wei et al. (2017) empirical equation (Equation 6), 
which evaluated the relation between T/ET and LAI, contextualized 
the retrieved relationship between photosynthetic activity and T 
(Wang et al., 2014).

where a and b correspond to the coefficients optimized for different 
land classes, which for the ‘grasslands and shrubs’ land classification, 
including savannas, are 0.69 and 0.28, respectively.

2.3.3  |  Continental-scale 3SEB implementation with 
Meteosat Second Generation data

In addition to site-level model runs, satellite data primarily from the 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard 
Meteosat Second Generation (MSG) satellites forced 3SEB. The 
MSG disk covers Africa, Europe and parts of South America and 
Asia (Figure S7 in SI). This area represents roughly 60% of world-
wide TGEs (Sulla-Menashe et al., 2019). LST, vegetation indices and 
shortwave irradiance were acquired from the land surface analysis 
satellite application facilities (LSA SAF) (https://lands​af.ipma.pt/en/

data/catal​ogue/). The overstory canopy height was obtained from 
space-borne LiDAR through the global ecosystem dynamics inves-
tigation (GEDI) L3 product (Dubayah et al., 2021). The Copernicus 
Global Land Operations (CGLOPS-1) 100-m land cover and forest 
cover product (Tsendbazar et al., 2021) delineated TGE pixels and 
offered an overstory fc estimate. Global meteorological data were 
collected from the Copernicus ECMWF ERA5 reanalysis dataset 
(Hersbach et al., 2020) and processed similarly to the sentinels for 
evapotranspiration (Sen-ET, Guzinski et al., 2020) approach. Refer 
to Section S8 in the SI for further details on the data sources and 
processing used to implement 3SEB over the MSG disk.

Model runs were forced at the hourly time step between 9:00 
and 18:00 UTC for 2012 overall pixels (pixel size: 0.05°) classified 
as TGEs within the MSG disk (see Section S8.2 in SI). In situ data 
from ES-LM1, SN-Dhr and ZA-Kru benchmarked this continental ap-
proach. Other sites used in this study were not included in this eval-
uation due to being outside the MSG extent (AU-Dry and US-Ton) 
or due to data unavailability during the processing period (ES-Abr).

3  |  RESULTS

3.1  | Vegetation biophysical inputs

In ES-LM1, the MODIS-derived LAIun correlated well with both in situ ​
LAItotal (r  =  .71) and LAIgreen (r  =  .83) (Figure 4). However, moder-
ate errors were observed, notably compared against LAItotal (RMSD 
=  0.59  m2/m2). LAIun was systematically lower compared to LAItotal 
(bias = −0.45 m2/m2), especially during the 2016 March—May peak 
biomass period (Figure 4b). Nevertheless, LAIun was generally aligned 
with LAIgreen (RMSE = 0.32 m2/m2 and bias = −0.08 m2/m2). In ES-
LM1, as field sampling protocols separated green and non-green ma-
terial, the fg,un was also assessed (Figure 4a). The retrieved fg,un aligned 
reasonably well with in situ measurements in ES-LM1, being well cor-
related (r =  .6) and capturing the magnitudes (bias = −0.05 m2/m2). 
Despite this, modelled fg,un had moderate errors (RMSE = 0.22) and 
a quicker dry down compared to observed values, which sustained 
peak values for longer (Figure 4a). In US-Ton, the retrieved LAIun were 
within similar magnitudes to the observed understory LAI (Figure 4d). 
However, the correlation was lower (r = .44), whilst errors were similar 
(RMSE = 0.43 m2/m2) to those observed in ES-LM1.

3.2  |  Tower-­based flux estimations with 3SEB

For all sites, midday half-hourly LE3SEB correlated well with observed 
LE (LEobs), with r ranging from 0.81 to 0.88 (Figure S3). LE3SEB RMSD 
ranged between 59 and 67 W/m2. Errors and bias were generally 
larger in ES-Abr and US-Ton due to the slight underestimation of 
H (bias = −38 and −36 W/m2, respectively). By contrast, H3SEB was 
slightly overestimated in AU-Dry (bias = 26 W/m2). For all sites, the 
NSE was greater than 0.5, which indicated a satisfactory model fit 
compared to observed data (Moriasi et al., 2007).

(6)T

ET
= aLAIb

http://www.lineas.cchs.csic.es/fluxpec/
http://www.lineas.cchs.csic.es/synertge/
https://www.licor.com/env/products/leaf_area/LI-3100C/
https://www.licor.com/env/products/leaf_area/LI-3100C/
https://landsaf.ipma.pt/en/data/catalogue/
https://landsaf.ipma.pt/en/data/catalogue/
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The ET3SEB RMSD ranged between 0.35 and 0.48  mm/day 
(Figure 5). At the daily scale, the NSE was greater for all sites, rang-
ing from 0.82 to 0.89. In AU-Dry, 3SEB tended to underestimate 
ET during the Jan-April peak biomass period. By contrast, ES-Abr, 
ES-LM1 and US-Ton often overestimated ET during the seasonal 
drought period. For ES-Abr and ES-LM1, this is particularly apparent 
during the 2016 dry period, largely due to the sustained H underes-
timation. It is noteworthy that 2016 was an extraordinarily produc-
tive year so the LAItotal, including non-green elements, was unusually 
high during the summer (Figure 4b).

3.3  |  Comparison with TSEB and TSEB-­2S

The TSEB, TSEB-2S and 3SEB model performance indicators (see 
Table S2) show that average midday H3SEB RMSD decreased for all 
sites from 89 to 66 W/m2 compared to HTSEB. The H NSE also in-
creased from 0.33 to 0.65. LE3SEB similarly improved for all model 
evaluation indicators (Table S2).

Along with the overall decrease in bias, 3SEB had less seasonal vari-
ability in errors compared to TSEB and TSEB-2S (Figure 6). For example, 

in AU-Dry, estimated H with TSEB and TSEB-2S deviated most from 
observations during the peak growing period (Feb-March), reaching H 
deviations up to ~200 W/m2. In ES-Abr, ES-LM1 and US-Ton, H errors 
with both two-source models were largest during the dry-down and 
seasonal drought. By contrast, the error distribution of 3SEB remained 
relatively consistent throughout the year, with � lower compared to 
TSEB and TSEB-2S (Figure 6). This was particularly evident during the 
seasonal dry-down period in US-Ton and ES-LM1, where TSEB-2S er-
rors tended to increase largely compared to 3SEB (Figure S4). However, 
TSEB-2S performed similarly to 3SEB in ES-Abr and even had slightly 
less bias during the peak seasonal drought (~August). The IAV was low-
est for 3SEB (~45 W/m2) and largest for TSEB-2S (~60 W/m2).

3.4  |  Flux partitioning between the 
ecosystem sources

3.4.1  |  Flux partition evaluation

The daily T3SEB correlated well with the data-driven TTEA at all sites 
(Figure 7; r > .76). Using the TTEA as the benchmark, errors are also 

F IGURE  4 Evaluation of MODIS-derived understory green fraction (fg,un, a) and leaf area index (LAIun) against in situ total (LAItotal, b) and 
green LAI (LAIgreen, c) measurements in ES-LM1 and US-Ton (d). Red error bars represent the standard deviation of sample values during 
each field campaign [Colour figure can be viewed at wileyonlinelibrary.com]
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relatively low (RMSD = 0.46 to 0.91 mm/day) and without large sys-
temic biases from 3SEB (bias = −0.03 to 0.6 mm/day). The largest 
deviations occurred in US-Ton, mostly due to T overestimations dur-
ing low LAI periods.

In addition, sub-canopy EC towers, available in ES-LM1 and 
US-Ton, assessed the modelled fluxes from the understory substrate 
(understory T + soil E). H, instead of LE, benchmarked the partition-
ing to limit issues related to energy balance (EB) closure and uncer-
tainties with the AE below the overstory canopy. The modelled Hsub 
were highly correlated with those measured for both sites, with r of 
0.84 and 0.92 (Figure 8). However, US-Ton had important systematic 
biases with an RMSD and bias of 117 and 87 W/m2, respectively. By 
contrast, modelled Hsub in ES-LM1 had less errors (RMSD: 63 W/m2) 
and was only slightly overestimated.

3.4.2  |  Seasonal flux partition

The overall mean annual T/ET for all sites was between 46% and 
66%. However, these TGEs are highly seasonal with the phenol-
ogy of dual vegetation layers inducing large variability to the dif-
ferent contributions to ET (Figure 9). Tov/ET was largest in AU-Dry 
(i.e., 45 ± 11%) and lowest in ES-Abr and ES-LM1 with mean annual 
contributions of 31 ± 9 and 34 ± 11%, respectively. In US-Ton, the 

mean Tov/ET was much more variable (40 ± 29%) due to the decidu-
ous nature of the tree species. In ES-Abr and ES-LM1, Esoil/ET was 
generally higher with the mean annual contribution of 54 ± 9 and 
53 ± 12%, respectively. The Tun/ET in US-Ton had the largest vari-
ability (22 ± 20%), with the contribution ranging from nearly 60% 
during the peak biomass period to ~0% during the seasonal drought.

3.4.3  |  ET partitioning relation with P and LAI

The results show that Tov/ET and Tun/ET have contrasting relations 
with monthly P (Figure 10), with the former negatively correlated 
(r  =  −.32, p  <  .01), whilst latter being positively related (r  =  .34, 
p <  .01). However, at the annual scale, both Tov/ET and Tun/ET are 
positively correlated with P, but the relation with Tov/ET is not as 
significant (i.e., p = .1). T/ET showed no trend with monthly P (r = .05, 
p = .51), but had a significant positive relation with annual P (r = .58, 
p = .02).

The empirical Wei et al. (2017) T/ET and LAI regression 
(Wei2017) was developed using mean site-level LAI and T/ET mea-
surements from numerous sites, aggregating over large temporal 
periods, and not at the monthly time step such as presented here 
with the 3SEB partitioning (Figure 11). At the ecosystem level, T/ET ​is 
less correlated with LAI (r ~ .4). Nevertheless, the relation becomes 

F IGURE  5 Daily time series of 3SEB estimated evapotranspiration (ET3SEB, blue) and observed ET (black) throughout the simulation 
period [Colour figure can be viewed at wileyonlinelibrary.com]
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    | 1503BURCHARD-LEVINE et al.

much stronger and linear when only the ratio transpired from the 
understory (i.e., Tun/ET) is assessed (r = .75). Although the fitted re-
gression was linear, the power function of Wei2017 still explained 
a large portion of the variance (r = .71), even though notable biases 
were observed (RMSD: 0.54). Interestingly, by examining only the 
substrate system, the ET partitioning (Tun/[Tun  +  Esoil]) was very 
much linked to LAIun (r = .86). Additionally, the fitted power trend is 
more notable and similar to Wei2017, although T/ET increases more 
slowly as LAI increases.

3.5  |  Continental 3SEB flux estimations

Figure 12 shows the estimated 2012 mean annual LE, including the 
different component partitioning ratios, when 3SEB was forced at 
the continental scale using SEVIRI/MSG data. The mean annual T/ET 
ratio was 50.5% over the entire MSG extent.

Three EC sites (shown in Figure 12) evaluated the flux outputs 
from this satellite implementation of 3SEB (Figure 13). The SEVIRI/
MSG 3SEB implementation observed higher errors compared to site-
scaled simulations (Section 3.2). However, H retrievals, especially 
for ES-LM1 and SN-Dhr, maintained within similar error magnitudes. 

Midday hourly H RMSD ranged from 64 to 97 W/m2 over the three 
sites, with both ES-LM1 and SN-Dhr observing a high correlation 
with measured fluxes (r  >  .75). ZA-Kru observed higher H errors 
(RMSD = 97 W/m2 and r =  .36). The increases in error were more 
pronounced for LE, with RMSD and r ranging from 83 to 104 W/m2 
and 0.4 to 0.87, respectively.

4  | DISCUSSION

The proposed 3SEB model improved the depiction and simulation 
of water and energy fluxes for heterogeneous semi-arid TGE land-
scapes, typically poorly represented by state-of-the-art models 
(Majozi et al., 2017; Ramoelo et al., 2014; Whitley et al., 2017). In the 
four sites, 3SEB accurately simulated ET (RMSD <0.5 mm/day) and 
related energy fluxes (midday H RMSD ~60 W/m2). The model struc-
ture also demonstrated robustness when applied at the continental 
scale (LE RMSD ~90 W/m2), along with reproducing flux dynamics 
for sites with spatial and temporal variability in canopy cover, P and 
LAI. Furthermore, it consistently improved over TSEB and TSEB-2S 
with fewer overall errors (Table S2), along with less intra- and IAV 
of errors (Figure 6). These semi-arid ecosystems often switch from 

F IGURE  6 Annual time series of the average daily H errors (|
|

Hobs − Hmod
|

|

) for TSEB (green), TSEB-2S (blue), and 3SEB (red). The shaded 
area corresponds to the minimum and maximum daily error of the four years assessed. The average H bias, annual standard deviation (�) and 
average daily range of error (IAV) are also shown [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE  7 Scatter plots of modelled daily transpiration (T3SEB) versus the TEA estimates (TTEA). Colours visualize the daily ecosystem LAI 
(LAIMODIS) [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE  8 Scatter plots of modelled midday (between 11 and 13 UTC) substrate (understory + soil) H (Hsub, mod) versus those observed 
(Hsub, obs) from the sub-canopy towers in ES-LM1 (left) and US-Ton (right). Colours visualize the daily ecosystem LAI (LAIMODIS) [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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being carbon sinks and sources. Therefore, better capturing the IAV 
is particularly relevant (Biederman et al., 2017; El-Madany et al., 
2020).

As shown in Burchard-Levine et al. (2021), the combination of 
tree and grass features in TGEs caused large uncertainties when 
using effective input/parameter values at coarser spatial scales 
(pixel size >10 m). Along with spatial complexities, the 3SEB model 
incorporated the distinct overstory and understory phenological 
dynamics of the TGEs' vegetation. Whitley et al. (2017) highlighted 
these considerations as important characteristics generally not ac-
counted for within land surface models, misrepresenting and gen-
erating uncertainty over TGEs. In particular, the seasonal dry-down 
induces an even greater landscape heterogeneity with important 
mixing of senesced and active understory vegetation along with the 
overstory. As shown in Figure 6 and Figure S4, 3SEB better captured 
these transitional periods, as the LAI is decoupled and the phenol-
ogy of each vegetation source can change independently. It is more 
challenging to represent the heterogeneity present through the ef-
fective values (e.g., TSEB) for a landscape with dual vegetation layers 
(Burchard-Levine et al., 2020, 2021). To account for this, TSEB-2S 
alters the model parameterization assuming either the understory or 
overstory vegetation as dominant. However, the sharp change in the 
parameterization caused uncertainty during the seasonal transition 

periods, when both vegetation sources co-dominate (Figure 6; Figure 
S4). This was particularly evident in US-Ton, where TSEB-2S had 
large errors at the beginning of the summer season (~June, Figure 6), 
subsequently decreasing during the peak seasonal drought periods 
(~July–August) when the understory had largely senesced.

As a proof of concept, 3SEB was applied at the continental scale 
over Africa, Europe and neighbouring regions from other continents. 
Quasi-global datasets available from LSA-SAF and ancillary data 
sources parameterized the model. The promising evaluation over 
three sites rendered errors only slightly greater than the site-level 
simulations (Figure 13). LE errors increased more significantly than 
H due to more uncertainty in the AE estimation (i.e., Rn – G, see 
Figure S9). This was expected due to numerous reasons. First, the 
ERA-5 reanalysis meteorological and LSA-SAF shortwave irradiance 
data inputs are likely to add more uncertainty, compared to locally 
measured meteorological and irradiance data. Crucially, shortwave 
irradiance directly affects Rn estimations and, thus, LE, as it is es-
timated as the residual of the EB. Figure S9 shows that LSA-SAF ir-
radiance inputs are highly correlated to tower measurements in all 
sites. Nevertheless, important errors are present (RSMD >100W/
m2), translating to nosier modelled outputs. Second, there is a large 
spatial scale mismatch between the pixel size (~5km) and the EC 
tower footprint (~hundreds of meters). This substantially increases 

F IGURE  9 Average daily seasonal ET partitioning into overstory (green), understory (blue) and soil (black) sources as a percentage of total 
surface ET. The shaded area represents the inter-annual variability (i.e., IAV, the range for that day of the year) of the four simulated years 
[Colour figure can be viewed at wileyonlinelibrary.com]
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pixel heterogeneity, which may induce greater uncertainty to the 
primary (i.e., LST, LAI) and ancillary (i.e., fg, fc, hc,) inputs (Chu et al., 
2021). Despite these greater sources of errors from model inputs, 
3SEB performed relatively well at the MSG pixel level, obtaining 
similar errors statistics as the 20m Sen-ET retrievals (LE RMSD 
~80–100 W/m2; Guzinski et al., 2020), and performed better than 

the LSA-SAF ET product (see Figure S8). These promising results 
demonstrate 3SEB’s potential application on the operational level or 
incorporated within global earth system models (ESM).

In addition to improving flux estimates in these complex land-
scapes, 3SEB explicitly decomposes ET into the different vegetation 
and land surface components. Research on ET partitioning from 

F IGURE  10 Scatter plots of rainfall (P) versus Tov/ET (upper rows), Tun/ ET (centre rows) and T/ET (lower rows) at both monthly (left 
column) and annual (right column) scales [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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biotic and abiotic sources (i.e., T/ET) has gained traction because 
of its key links to plant water use and limitations in the context of 
climate and agronomic sciences (Anderson et al., 2017; Fisher et al., 
2017). Despite current efforts (Ma et al., 2020; Nelson et al., 2020; 
Stoy et al., 2019), determining T remains a challenge due to its com-
plex relations with soil moisture, climatology, vegetation cover and 
phenological cues (Perez-Priego et al., 2018; Scott & Biederman, 
2017; Wei et al., 2017). Numerous studies indicate that global mean 
T/ET is roughly 60% (Fatichi & Pappas, 2017; Good et al., 2015; Li 
et al., 2019a; Lian et al., 2018; Schlesinger & Jasechko, 2014; Stoy 
et al., 2019; Sun et al., 2019; Wei et al., 2017). However, these re-
ported global T/ET values carry large uncertainty, ranging between 
~30% and 90% (Stoy et al., 2019). The 3SEB reported here a T/ET 
between 44 and 66% at the site scale, which aligned well with the 
TEA algorithm (RMSD: ~0.6 mm/day), and a mean of 50.5% for the 
continental scale (~Africa and Europe) MSG simulations (Figure 12d). 
A meta-analysis of T/ET estimates over 38 semi-arid sites (Sun et al., 
2019) reported that T/ET was roughly 50%, as similarly reported in 
this study.

Soil evaporation (Esoil/ET) was largest in ES-Abr and ES-LM1 
representing around ~55% of ET. This is in line with Perez-Priego 
et al. (2017, 2018) who show that the understory ET dominates in 
ES-LM1. In fact, Esoil/ET in Perez-Priego et al. (2018) reached up 
to ~70% during the growing period, estimated through lysimeter 
measurements and a novel ET partitioning method, similar to that 
achieved with 3SEB (Figure 9). Perez-Priego et al. (2018) observed 
considerable soil evaporation rates even when the shallow (i.e., 
sandy) soil was dry, indicating the evaporation rates may be upheld 
from moisture of the deeper soil (e.g., clay) layer.

Whilst past studies suggested T/ET is independent of P (e.g., 
Fatichi & Pappas, 2017; Schlesinger & Jasechko, 2014; Sun et al., 
2019), mean annual T/ET correlated positively here with annual 
P (r  =  .58, p  =  .02; Figure 10). In water-limited ecosystems, ET 

partitioning might be more strongly linked to P and water availabil-
ity (e.g., Perez-Priego et al., 2018). El-Madany et al. (2020) reported 
very strong linear correlations between annual P and GPP for ES-
Abr and ES-LM1, which has mechanistic links to T. At the monthly 
scale, Tun/ET and Tov/ET had opposing relations with seasonal P. 
This further demonstrated the contrasting survival strategies of 
both vegetation functional types. The tree overstory has large root 
systems to access deeper soil moisture sources and remains physi-
ologically active during the dry season (Archibald & Scholes, 2007; 
Higgins et al., 2011; Luo et al., 2018). Their growth is less dependent 
on rainfall events or other meteorological cues (Archibald & Scholes, 
2007; Higgins et al., 2011). By contrast, herbaceous understory spe-
cies respond quickly to water availability, opting for an annual phe-
nology to avoid the drought season (Bond, 2008; Moore et al., 2016). 
Therefore, Tov/ET is usually greater during the dry months with the 
inactivity of understory species, and hence the negative correlation. 
Interestingly, Tov/ET was positively related to P at the annual scale 
(r = .43, p = .1). This suggests that whilst seasonal water availability is 
not important for tree species, the long-term P is. However, this non-
significant relationship (p > .05) needs more observations to confirm 
this trend. At the ecosystem level, there was no significant correla-
tion between monthly T/ET and P (r = .05, p = .5), due to the con-
trasting relation each of the vegetation layers had with seasonal P.

Other studies reported stronger links between T/ET and LAI 
compared to P (e.g., Sun et al., 2019; Wang et al., 2014; Wei et al., 
2017). Wei et al. (2017) developed empirical models for different 
land cover types to obtain T/ET estimates from LAI. Nevertheless, 
they stated that savanna ecosystems presented large uncertain-
ties due to the overstory and understory differences in water up-
take processes. Indeed, LAI did not explain a large portion of the 
T/ET variance (r  =  .4). However, the relationship was much stron-
ger with LAI, after separating the fluxes to consider only Tun/ET 
(r = .77). Furthermore, Tun/[Tun + Esoil] was highly correlated with the 

F IGURE  11 Relationship between monthly total leaf area index (LAI) and T/ET (a) and Tun/ET (b); and understory leaf area index (LAIun) 
and Tun/Tun + Esoil (c). Black lines are the fitted regression optimizing the a and b coefficients of Equation 9 and purple lines are the associated 
relation derived from Wei et al. (2017). Mean site-level averages are highlighted in yellow [Colour figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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F IGURE  12 Map of SEVIRI/MSG forced 3SEB estimations of the 2012 mean annual LE (a), Tov/ET (b), Tun/ET (c) and T/LE (d). Dark grey 
areas correspond to TGE pixels not processed due to cloud or other processing issues. In situ EC sites are located by red points [Colour figure 
can be viewed at wileyonlinelibrary.com]

F IGURE  13 Evaluation of SEVIRI/MSG 3SEB daytime fluxes against tower measurements in 2012 from ES-LM1, SN-Dhr and ZA-Kru 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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understory LAIun (r = .83), with a similar fitted power function to Wei 
et al. (2017). This result is somewhat expected since LAIun is an input 
to 3SEB. Nonetheless, it illustrates the advantage of decomposing 
the flux and vegetation components in TGEs. Indeed, this has im-
portant implications for land surface models, which often rely heav-
ily on LAI through a ‘big leaf’ approach (e.g., Lian et al., 2018). Whilst 
certain models consider horizontal heterogeneity within modelling 
grids, the integration of different vertical layers (e.g., overstory and 
understory) are rarely considered in Earth system models. As shown 
in Bonan et al. (2021), ‘big leaf’ canopies may oversimplify complex 
vertical vegetation structures and processes, resulting in poorer 
model robustness compared to multi-layered models. This canopy 
misrepresentation is particularly relevant in TGEs, having two veg-
etation layers with highly different survival strategies and charac-
teristics, making it inadequate to relate singular bulk biophysical 
variables to represent vegetation functioning at the ecosystem scale 
(as supported by Figure 11). The simple, yet effective, dual vegeta-
tion layer representation in 3SEB is a way forward for future model 
development, particularly for landscapes with important differences 
in the overstory and understory canopies.

The 3SEB processed-based T/ET partitioning compared well 
with the data-driven TEA, even though they have very different and 
independent approaches. Whilst TTEA is not a measured dataset, its 
highly data-driven approach allows for an appropriate benchmark, 
especially considering the limitations (and unavailability) of T/ET 
measurements, such as sap flux or isotopic methods (Anderson et al., 
2017; Kool et al., 2014). TEA exploits ET’s link with GPP and does 
not incorporate inputs related to vegetation structure (e.g., hc, LAI). 
Despite this, the sites assessed rendered high T correlations from 
both methods (r >  .75) and obtained similar magnitudes. The larg-
est discrepancies occurred in US-Ton during the summer drought, 
with large T3SEB overestimations compared to TTEA. The understory 
EC tower in US-Ton corroborated this pattern, as the model system-
atically overestimated Hsub (Hun + Hsoil) (Figure 8). Total ecosystem 
H was well modelled and even slightly underestimated (see Figure 
S3), indicating that Hov was substantially underestimated. Since the 
residual of the energy balance determined LE, the underestimated 
Hov suggests LEov was overestimated, as supported through the TTEA 
comparison.

The apparent LEov overestimation in US-Ton may be linked to the 
constant LAIov forced into 3SEB, including uncertainty in capturing 
US-Ton's more dynamic deciduous overstory phenology. This would 
primarily affect the amount of radiation intercepted (and avail-
able) by overstory (i.e., Rnov) as LAI is the main input of the RTM 
within 3SEB (Section S1 in SI). However, the estimated leaf-on LAIov 
in US-Ton (and other sites) was well captured compared to previ-
ous measurements found in the literature (see S4.2 in SI). In fact, 
a local sensitivity analysis of LAIov showed very little effect of this 
input on T/ET estimates (Figure S5). As shown in Ryu et al. (2012) 
with upward-point cameras in US-Ton, LAIov peaks during the ini-
tial leaf-on period at around ~0.85  m2/m2, but gradually declines 
to ~0.7 m2/m2, before the rapid decrease in LAI during the leaf-off. 
Additionally, during the same seasonal period, Xu and Baldocchi 

(2003) showed gradual decreases in carbon assimilation and stoma-
tal conductance from the tree overstory. These results demonstrate 
their conservative water-saving strategies during dry conditions. 
Similar observations were reported for trees in both Spanish and 
Australian sites (Luo et al., 2018; Moore et al., 2016).

These findings suggest that trees in semi-arid climates hold a 
strong physiological control on ET, regulating their stomata during 
periods of sustained increases in atmospheric vapour pressure defi-
cit (VPD) (Niinemets, 2015; Pérez-Priego et al., 2010; Villalobos 
et al., 2000, 2012). The 3SEB may not adequately depict this sto-
matal control, especially in relation to VPD, resulting in the LEov 
overestimation apparent in US-Ton. This effect is likely more pro-
nounced in US-Ton, due to the larger tree overstory canopy cover 
(48%) compared to other sites (~20%). Certain studies suggested 
that the potential PT coefficient (i.e., �PT in Equation 5.1) is closer to 
~1 in trees, even with ample water availability, instead of the widely 
used 1.26 (Andreu et al., 2018; Baldocchi & Xu, 2007; Black, 1979; 
Shuttleworth & Calder, 1979). To test this, 3SEB was also forced with 
�PT = 1 for the overstory ET initialization, which slightly improved T/
ET estimates in US-Ton (Figure S6) but further underestimated ET in 
AU-Dry (data not shown). This suggests that 3SEB should directly 
incorporate the physiological control of stomatal resistance, instead 
of calibrating the �PT parameter. Colaizzi et al. (2014) applied the 
Penman-Monteith (PM) formulation within TSEB to derive the initial 
canopy T, which resulted in better T/ET agreement over a semi-arid 
cultivated site compared to the PT approach. However, they applied 
it with a constant maximum stomatal conductance. Therefore, the 
use of a tree stomatal closure constraint with increasing VPD (e.g., 
Damour et al., 2010; Miner et al., 2017), coupled with the PM initial-
ization, may be a way forward to improve 3SEB’s Tov/ET estimates.

The proposed MODIS-based LAI partitioning method seemingly 
captured the understory LAI dynamics in both magnitude and timing 
for TGEs (Section S4.2 in SI). The retrieved LAIun had low errors com-
pared to in situ destructive measurements in ES-LM1 and US-Ton 
(Figure 4). However, ES-LM1 observed important LAIun underesti-
mations against LAItotal, especially during the dry periods of highly 
productive years. Very low LAIun values (i.e., <0.5 m2/m2) during the 
seasonal drought caused non-linear increases to the bulk vegeta-
tion resistance Rx (data not shown), which is negatively related to 
LAI (Equation S11). These highly productive years led to increased 
amounts of remaining dry vegetation biomass during the seasonal 
drought period. The dead vegetation, whilst not active, increased 
the roughness of the landscape, inducing more aerodynamic con-
ductivity and H. This situation was most evident during ‘wet’ years 
with large understory vegetation productivity, most visible in 2016 
for ES-Abr and ES-LM1, which suffered important LE biases during 
the seasonal drought (Figure 5). The in situ data in ES-LM1 re-
vealed that LAItotal remained between 0.5 and 1 m2/m2 during the 
peak drought period. In contrast, the MODIS estimated LAIun was 
<0.4 m2/m2. MODIS LAI product refers to LAIgreen (Fensholt et al., 
2004), whereas LAItotal affects the resistance and radiation partition 
of the landscape. This demonstrated the Rx sensitivity to the LAI 
uncertainty at very low magnitudes, which should include non-green 
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elements (i.e., LAItotal or PAI). During the growing season, high LAI 
values are largely composed of green material, making LAIgreen a 
good proxy for LAItotal. However, LAItotal deviates from LAIgreen 
during the seasonal drought due to the large presence of senescent 
vegetation.

The effect of senescent vegetation on biophysical variables re-
mains challenging to quantify (Martín et al., 2020; Melendo-Vega 
et al., 2018; Pacheco-Labrador et al., 2021). More specific retrieval 
methods, such as applying RTMs incorporating senescent vegeta-
tion may improve LAI estimations (e.g., Pacheco-Labrador et al., 
2021; Proctor et al., 2017). The need for a complete annual time 
series, with both rainy and dry seasons, was another drawback of 
the LAI partitioning method presented here. This makes the cur-
rent model set-up applicable for only non-time-critical diagnosis 
or hindcast purposes as it cannot dynamically separate LAI as it 
is prescribed. Spectral unmixing techniques (e.g., Meyer & Okin, 
2015) may be a way forward to improve the LAI retrievals and par-
titioning in these dual-vegetated landscapes. Other data streams 
like spaceborne LiDAR data from NASA’s GEDI mission also open 
new opportunities to retrieve more accurate plant structural (e.g., 
hc, fc) and biophysical (e.g., PAI) variables in complex ecosystems 
(Dubayah et al., 2020). Other remaining challenges include ade-
quately quantifying the Rn in these heterogeneous landscapes, 
particularly with the use of global shortwave irradiance inputs. The 
3SEB estimated Rn remains slightly underestimated (see Table S2 in 
SI) with scarce measured data available to validate its decomposi-
tion across the different canopy sources. Three-dimensional RTMs, 
such as the discrete anisotropic radiative transfer (DART) model 
(Gastellu-Etchegorry et al., 2015) or as described by Kobayashi 
et al. (2012) may serve as a framework to better characterize Rn in 
these complex ecosystems.

5  |  CONCLUSIONS

The novel, yet structurally simple, 3SEB model offers new avenues 
to improve drought monitoring and investigate the different plant 
water uses in semi-arid TGEs. ET and energy flux retrievals over 
these complex, multi-layered ecosystems are a challenging and well-
documented issue (Andreu et al., 2018; Burchard-Levine et al., 2020; 
Majozi et al., 2017; Ramoelo et al., 2014; Whitley et al., 2017), de-
spite being critical for the global carbon and water cycle (Ahlström 
et al., 2015; Jung et al., 2011; Poulter et al., 2014). The dual veg-
etation strata, the grass-dominated understory and tree-dominated 
overstory, have distinct structural, physiological and phenological 
characteristics that should be considered within modelling schemes 
(Whitley et al., 2017). The 3SEB accommodated an additional veg-
etation source to the well-known TSEB to accomplish this, improving 
their depiction and effect on energy fluxes.

The 3SEB model achieved accurate ET estimations during four-
year periods over sites in Australia, Spain (2) and the USA (ET RMSD: 
~0.4 mm/day and NSE >0.8). The model performed well despite the 
highly variable climatic and vegetation conditions. The 3SEB largely 

improved the energy flux modelling compared to TSEB and TSEB-2S. 
It slightly underestimated ET for AU-Dry due to H overestimation 
during the peak biomass. In contrast, ES-LM1 and US-Ton slightly 
overestimated LE during the seasonal drought, particularly for highly 
productive (i.e., ‘wet’) years. This issue was linked to the Rx overes-
timation at very low LAI values (< 0.5 m2/m2). The LAIun input was 
slightly underestimated compared to field measurements in ES-LM1 
and US-Ton and particularly lower compared to LAItotal measure-
ments in ES-LM1. This highlights the importance of accounting for 
the large effect of senescent vegetation on remote sensing-derived 
LAI products, notably in semi-arid ecosystems, which play an import-
ant role in the transfer of radiation and turbulence. Continental-scale 
3SEB results forced with SEVIRI/MSG data also showed promising 
results. However, the larger uncertainty from model inputs, particu-
larly shortwave irradiance, and spatial mismatch between pixel and 
tower scales caused larger modelling errors.

The 3SEB additionally separated ET into the different tree-grass-
soil components of the landscapes, not previously possible with 
available data-driven methods. The 3SEB T/ET partitioning com-
pared well to the data-driven TEA algorithm (r >  .76) and demon-
strated the contrasting relations of the two vegetation layers in TGEs 
with seasonal P. T/ET was not very correlated with LAIMODIS at the 
ecosystem level. However, the relation was much stronger when de-
composing T/ET and LAI into the different vegetation layers. These 
findings should alleviate the disproportionally large uncertainty of 
global remote sensing-based ET products in these important and 
extensive ecosystems, along with offering a simple multi-layer ap-
proach of potential use to Earth system models. The 3SEB presents a 
new framework to understand the role of complex and distinct veg-
etation dynamics, at both temporal and spatial scales, in modulating 
ecosystem-level fluxes and water scarcity.
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DATA AVAIL ABILIT Y S TATEMENT
The 3SEB model code is available through its public Github re-
pository: https://github.com/Vicen​teBur​chard/​3SEB. Biometeo
rological data were collected for AU-Dry (Hutley et al., 2011) 
through the Ozflux portal: http://www.ozflux.org.au/monit​oring​
sites/​dryri​ver/; for US-Ton (Ma et al., 2021) through the Ameriflux 
portal: https://ameri​flux.lbl.gov/sites/​sitei​nfo/US-Ton; for ES-Abr 
(El-Madany et al., 2020) through its public repository: https://
zenodo.org/recor​d/37078​42#.YWMEA​tpByyz and for ES-LM1 
(El-Madany et al., 2018; 2021) through its public repository: 
https://zenodo.org/recor​d/44535​67#.YWMED​NpByyw. In addi-
tion, to evaluate the continental scale evaluation, data for SN-Dhr 
(Tagesson et al., 2013; 2015; http://sites.fluxd​ata.org/SN-Dhr/) 
and ZA-Kru (Archibald et al., 2009; Scholes, 2013; http://sites.
fluxd​ata.org/ZA-Kru/) were collected from the FLUXNET2015 
release (Pastorello et al., 2020). MODIS LAI and NDVI data were 
collected through the (ORNL DAAC, 2018) subset and visualiza-
tion tool: https://doi.org/10.3334/ORNLD​AAC/1379. SEVIRI/
MSG data were acquired from Land Surface Analysis Satellite 
Application Facilities (LSA SAF) (https://lands​af.ipma.pt/en/
data/catal​ogue/). Please refer to section 8 of the Supplementary 
Information for links to these datasets.
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