265 research outputs found

    Spectral analysis of Markarian 421 and Markarian 501 with HAWC

    Full text link
    The Hight Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory monitors the gamma-ray sky in the energy range from 100 GeV to 100 TeV and has detected two very high energy (VHE) blazars: Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501) in 1.5 years of observations. In this work, we present the spectral analysis above 1 TeV of both sources using a maximum likelihood method and an artificial neural network as an energy estimator. The main objectives are to constrain the spectral curvature of Mrk 421 and Mrk 501 at \sim5 TeV using the EBL models from Gilmore et al. (2012) and Franceschini et al. (2008).Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    Searching for Very High Energy Emission from Pulsars Using the High Altitude Water Cherenkov (HAWC) Observatory

    Full text link
    There are currently over 160 known gamma-ray pulsars. While most of them are detected only from space, at least two are now seen also from the ground. MAGIC and VERITAS have measured the gamma ray pulsed emission of the Crab pulsar up to hundreds of GeV and more recently MAGIC has reported emission at 2\sim2 TeV. Furthermore, in the Southern Hemisphere, H.E.S.S. has detected the Vela pulsar above 30 GeV. In addition, non-pulsed TeV emission coincident with pulsars has been detected by many groups, including the Milagro Collaboration. These GeV-TeV observations open the possibility of searching for very-high-energy (VHE, > 100GeV) pulsations from gamma-rays pulsars in the HAWC field of view.Comment: Presented at the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. See arXiv:1508.03327 for all HAWC contribution

    Early Science with the Large Millimeter Telescope: an energy-driven wind revealed by massive molecular and fast X-ray outflows in the Seyfert Galaxy IRAS 17020+4544

    Full text link
    We report on the coexistence of powerful gas outflows observed in millimeter and X-ray data of the Radio-Loud Narrow Line Seyfert 1 Galaxy IRAS 17020+4544. Thanks to the large collecting power of the Large Millimeter Telescope, a prominent line arising from the 12CO(1-0) transition was revealed in recent observations of this source. The complex profile is composed by a narrow double-peak line and a broad wing. While the double-peak structure may be arising in a disk of molecular material, the broad wing is interpreted as the signature of a massive outflow of molecular gas with an approximate bulk velocity of -660 km/s. This molecular wind is likely associated to a multi-component X-ray Ultra-Fast Outflow with velocities reaching up to ~0.1c and column densities in the range 10^{21-23.9} cm^-2 that was reported in the source prior to the LMT observations. The momentum load estimated in the two gas phases indicates that within the observational uncertainties the outflow is consistent with being propagating through the galaxy and sweeping up the gas while conserving its energy. This scenario, which has been often postulated as a viable mechanism of how AGN feedback takes place, has so far been observed only in ULIRGs sources. IRAS 17020+4544 with bolometric and infrared luminosity respectively of 5X10^{44} erg/s and 1.05X10^{11} L_sun appears to be an example of AGN feedback in a NLSy1 Galaxy (a low power AGN). New proprietary multi-wavelength data recently obtained on this source will allow us to corroborate the proposed hypothesis.Comment: Accepted for publication on ApJ Letters, 9 pages, 4 figure

    Crab Pulsar Photometry and the Signature of Free Precession

    Full text link
    Optical photometry for the pulsar PSR0531+21 has been extended with new observations that strengthen evidence for a previously observed 60 seconds periodicity. This period is found to be increasing with time at approximately the same rate as the rotational period of the pulsar. The observed period and its time dependence fit a simple free precession model.Comment: 6 pages, 7 figures. Published in A&

    Pulsar studies with GRO-COMPTEL

    Get PDF
    Pulsar measurements performed by the experiment COMPTEL, aboard the Compton Gamma Ray Observatory, are described. The main results refer to the Crab and Vela pulsars whose pulse shape characteristics are given in some detail and light curves are compared with those above 50 MeV, as observed by the COS-B satellite. No other gamma-ray pulsars have been detected to date by COMPTEL, the upper limit on the pulsed signal from Geminga being compatible with indications by other experiments. © 1993

    Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279

    Full text link
    In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.Comment: 32 pages, 19 figures, Accepted for publication in MNRA

    Absorption of high-energy gamma rays in Cygnus X-3

    Get PDF
    The microquasar Cygnus X-3 was detected at high energies by the gamma-ray space telescopes AGILE and Fermi. The gamma-ray emission is transient, modulated with the orbital period and seems related to major radio flares, i.e. to the relativistic jet. The GeV gamma-ray flux can be substantially attenuated by internal absorption with the ambient X-rays. In this study, we examine quantitatively the effect of pair production in Cygnus X-3 and put constraints on the location of the gamma-ray source. Cygnus X-3 exhibits complex temporal and spectral patterns in X-rays. During gamma-ray flares, the X-ray emission can be approximated by a bright disk black body component and a non-thermal tail extending in hard X-rays, possibly related to a corona above the disk. We calculate numerically the exact optical depth for gamma rays above a standard accretion disk. Emission and absorption in the corona are also investigated. GeV gamma rays are significantly absorbed by soft X-rays emitted from the inner parts of the accretion disk. The absorption pattern is complex and anisotropic. Isotropization of X-rays due to Thomson scattering in the companion star wind tends to increase the gamma-ray opacity. Gamma rays from the corona suffer from strong absorption by photons from the disk and cannot explain the observed high-energy emission, unless the corona is unrealistically extended. The lack of absorption feature in the GeV emission indicates that high-energy gamma rays should be located at a minimum distance ~10^8-10^10 cm from the compact object. The gamma-ray emission is unlikely to have a coronal origin.Comment: 11 pages, 9 figures, accepted for publication in Astronomy and Astrophysic
    corecore