392 research outputs found

    Effect of clay type on dispersion and barrier properties of hydrophobically modified poly(vinyl alcohol)-bentonite nanocomposites

    Get PDF
    The oxygen and water vapor permeability at high relative humidity was studied for composite films formed by incorporation of three different bentonites (MMT) into an ethylene-modified, water-soluble poly(vinyl alcohol), EPVOH. The oxygen permeability decreased linearly with an increased addition of hydrophilic MMTs. X-ray diffraction and Fourier transform infrared spectroscopy suggested a homogeneous distribution in the thickness direction with disordered and probably exfoliated structures for hydrophilic MMTs. In contrast, organophilic modified clay showed an intercalated structure with the clay preferentially located at the lower film surface, a combination which was however efficient in reducing the water vapor- and oxygen permeabilities at low addition levels. Composite films of EPVOH and Na+-exchanged MMT resulted in high resistance to dissolution in water, which was ascribed to strong interactions between the components resulting from matching polarities. Annealing the films at 120°C resulted in enhanced resistance to water dissolution and a further reduction in oxygen permeabilit

    Hydrophobically modified poly(vinyl alcohol) and bentonite nanocomposites thereof: Barrier, mechanical, and aesthetic properties

    Get PDF
    Composite films were formed by incorporating three different bentonites into an ethylene modified, water-soluble poly(vinyl alcohol), EPVOH. The interaction of EPVOH with both hydrophilic and hydrophobic bentonites was investigated. EPVOH provided lower water vapor and oxygen transmission rates compared to a conventional PVOH grade when exposed at high relative humidities (70-90% RH). EPVOH films which exhibited oxygen barrier properties comparable to that of a biaxially oriented PET packaging film at 80% RH were produced. High compatibility between EPVOH and hydrophilic bentonites provided an even distribution of clay platelets in the composites. A strong increase in Young's modulus with increased addition of any of the three bentonites was found. At low addition levels the hydrophobic bentonite proved to be effective in terms of maintaining high elongation at break, high transparency and high gloss
    corecore