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ABSTRACT 

Composite films were formed by incorporating three different bentonites into an ethylene modified, 

water-soluble poly(vinyl alcohol), EPVOH. The interaction of EPVOH with both hydrophilic and 

hydrophobic clays was investigated. EPVOH provided lower water vapor and oxygen transmission 

rates compared to a conventional PVOH grade when exposed at high relative humidities (70-90 % 

RH). EPVOH films which exhibited oxygen barrier properties comparable to that of a biaxially 

oriented PET packaging film at 80% RH were produced. High compatibility between EPVOH and 

hydrophilic montmorillonites provided an even distribution of clay platelets in the composites. A 

strong increase in Young´s modulus with increased addition of any of the three bentonites was 

found. At low addition levels the organomodified clay proved to be effective in terms of maintaining 

high elongation at break, high transparency and high gloss. 

KEYWORDS: composites, clay, films, packaging, mechanical properties 

INTRODUCTION 

Poly(vinyl alcohol), PVOH, is a synthetic polymer that offers good film-forming and coating 

properties and the films or coatings produced are proven effective barrier materials to oxygen and 

other gases. PVOH has also been widely used as a model polymer for studying properties of 

hydrophilic polymers, due to its simple and well-defined chemical structure.
1,2

  

The hydrophilic PVOH is sensitive to moisture and thus its barrier properties are strongly affected by 

the surrounding relative humidity (RH). For instance the oxygen permeability of PVOH films generally 

increases 2500 times on going from 0% to 100% RH.
3
 This is typical of hydrophilic (bio)polymers in 

which their oxygen permeability increases exponentially with increased relative humidity.
4
 The loss 

of oxygen barrier under moist conditions is therefore one of the major obstacles preventing the 

successful use of these polymers in the food packaging sector, especially for packaging high-

moisture foods or food which will rapidly lose quality when in contact with moisture or oxygen. 

Knowledge generated from studies on PVOH may ultimately lead to novel approaches to improve its 

performance and that of other hydrophilic biobased polymers, e.g. starch, for use in packaging 

applications.
5
 

PVOH allows a wide range of chemical modifications to its backbone. Consequently, critical 

parameters such as molecular weight and solution viscosity can be tuned to match the specifications 

required for different applications. Several attempts have been made to improve the barrier 

properties of PVOH when exposed at high relative humidities by, for example, copolymerization of 

vinyl alcohol and ethylene. The resulting ethylene vinyl alcohol (EVOH) copolymers are known for 
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their outstanding gas barrier properties, which are much superior to other polymers conventionally 

used in packaging. The highest oxygen barrier properties of EVOH occur with ethylene in the range 

of 27-32 mol%.
6
 However, the poor water solubility of EVOH copolymers at these high ethylene 

contents restricts their utility to water-free processes like extrusion coating and blow molding.
6,7

 

Consequently, water-soluble ethylene modified random copolymers of poly(vinyl alcohol) have 

recently been introduced to the market under the trade name Exceval® (herein termed EPVOH). The 

ethylene modification gives the polymer a hydrophobic character. EPVOH is stated to have lower 

oxygen transmission rates (OTR) than standard PVOH films by almost an order of magnitude
8
, 

moreover they are also more effective oxygen barriers at higher relative humidities. These water-

soluble EPVOHs are also claimed to have OTR values below that of commercial, non-water soluble 

EVOH coatings (27 mol% ethylene) in the range from zero to 70% RH.
8
 Thus, their water-solubility, 

biodegradability, favorable barrier properties and approval for food contact make these novel 

grades highly exploitable for use as films or coatings for various food packaging applications. 

Another strategy to improve the barrier and mechanical performance of polymer films is the 

formation of composites by the incorporation of mineral fillers, especially layered silicate minerals 

like montmorillonite. Compatibility between polymer and mineral filler is crucial for the formation of 

well-dispersed composite structures.
9,10

 Intercalation or exfoliation of clay layers are favored if the 

hydrophilicity/hydrophobicity of the polymer and the natural (unmodified) or organically modified 

clay are closely matched.
11

 Organophilic modification of clays by replacing the naturally occurring 

alkali or alkaline earth metal ions with organic cations lowers the surface energy of the clay and 

increases their compatibility with a number of hydrophobic polymer matrices. 
12-14

 

Successful intercalation or exfoliation of hydrophilic hectorite and montmorillonite in water-soluble 

PVOH has been reported e.g. by Carrado et al.
15

 and Strawhecker and Manias
16

, whereas addition of 

hydrophobic organomodified clays to hydrophilic starch led to the formation of 

microcomposites.
11,17,18

 Natural montmorillonites are easily dispersed in water due to their polar 

character
10

 and are thus in general compatible with water-soluble polymers like PVOH. A convenient 

and widely accepted method for composite formation and preparation of coatings is therefore by 

solvent mixing/casting even though melt intercalation may be considered the most conventional.
12

 

Transparency is frequently demanded for polymer films used in packaging
19,20

 as brand owners want 

customers to be attracted by the visual aspect of their product. The addition of fillers visually makes 

composite films more opaque and the quality and level of filler addition that still provides acceptable 

transparency are thus important issues when selecting filler materials. Layered silicate minerals have 

gained interest as fillers for PVOH films as a way to retain their optical clarity, which is contrary to 

conventional fillers that generate opaque films.
16

 However, most clays have a natural off-white to 

yellowish colour and their effect on the overall visual perception of colorless polymer films needs to 

be assessed. 

In this study, a conventional PVOH and two EPVOH grades were investigated. Three different 

bentonites, as fillers, were incorporated at selected concentrations to form composite films. Since 

application of water dispersions is a widely adopted method for coating of paper for packaging 

manufacture, this study concentrated on the formation of composite films using water as solvent. 

One of the major objectives was to study how the water-soluble hydrophobically modified EPVOHs 

interacted with both hydrophilic (natural) and organophilic (organomodified) clays. The molecular 
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weight and chemical composition of the polymers were first characterized. Then the hydrophobic 

character of cast films was analyzed in terms of polar/apolar surface energy. The water vapor and 

oxygen transmission rates were determined after exposure to various relative humidities (RH). In 

addition, the influence of filler type and concentration on mechanical properties, transparency, 

colour and gloss of composite films were evaluated.  

EXPERIMENTAL 

Materials 

Poly(vinyl alcohol) with degree of hydrolysis, DH, of 98-99 mol% was used as the standard, 

unmodified PVOH grade. An EPVOH development product (here denoted EPVOH) was used to study 

the impact of the hydrophobic modification on the barrier properties. A commercial EPVOH grade 

(here denoted EPVOHc) was used for reference. Both EPVOH and EPVOHc had DH values in the 

range 97.5-99 mol%. All three grades were supplied by Kuraray Europe GmbH (Frankfurt am Main, 

Germany).  

Polyethylene (LDPE 30 µm, defa-Folien/Heikoflex, Lohmar, Germany) and polyethylene 

terephthalate (PET 12 µm, biaxially oriented Hostaphan®, Mitsubishi Polyester film, Wiesbaden, 

Germany) films were used for reference. These polymers are universal food packaging films with 

well-defined structures. The oxygen permeability of the LDPE and PET films are considered to be 

unaffected by relative humidity due to their non-polar character (Robertson 2006).  

Three different bentonites each containing predominantly montmorillonite were used: i) 

Cloisite®Na
+
, (here denoted Na-MMT) from Southern Clay Products Inc., Gonzales, TX, USA with a 

cation exchange capacity (CEC) of 92.6 meq/100 g clay and layer diameter of 75-100 nm, ii) PGN® 

from Nanocor, Arlington Heights, IL, USA which mostly contains Na
+
 exchangeable cations but also a 

small portion of Ca
2+

 (here denoted C-MMT). More significantly, C-MMT has a larger layer diameter 

of 300-500 nm and a higher CEC value (120 meq/100 g) compared to Na-MMT, iii) Dellite® 67 G 

(Laviosa Chimica Mineraria S.p.A., Livorno, Italy), which is an organically modified bentonite (here 

denoted Q-MMT) in which the naturally occurring sodium ions have been replaced by dimethyl-

dihydrogenated tallow ammonium ions. Q-MMT has a cation exchange capacity of 105 meq/100 g 

clay and a layer diameter of 500 nm. Both Na-MMT and C-MMT are intended for use as additives to 

hydrophilic polymers such as polyvinyl alcohols, polysaccharides and polyacrylic acids, whereas Q-

MMT is intended for hydrophobic polymers including polypropylene, polyethylene or ethylene vinyl 

acetate. 

Methods  

All three polymers were dissolved in water at 10 wt% and heated at 95°C for 60 minutes whilst being 

continuously stirred. Bentonites were used without pre-treatment and polymer-clay composites 

were formed by addition of 3, 6, 9 or 12 parts dry clay per hundred parts of dry polymer whilst 

heating. Additional water was added to adjust the final solids content to 10 wt% in all mixtures. 
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Characterization of polymers 

The molecular weight of the polymers was determined using a size exclusion chromatography (SEC) 

device fitted with a Waters 410 Refractive Index Detector. Samples were dissolved in the mobile 

phase (10 mM NaOH in Milli-Q water) at 10 mg/ml and filtered through a 0.45 µm PTFE syringe filter 

prior to analysis. The samples were injected using a 20 µl sample loop (Rheodyne 7725 Manual 

Injector) and a Waters 515 HPLC pump operated at a flow rate of 1 ml/min. The columns used were 

Tosoh TSKGel (G3000PW-G4000 PW-G3000PW) with guard column TSKGel (PWL 7.5 cm x 7.5 mm). 

Calibration was achieved using polyethylene glycol/polyethylene oxide standards with molecular 

weights ranging from 1500-250 000 g/mol. 

The solution viscosities of the 10 wt% polymer solutions were determined by a Brookfield 

viscometer (Brookfield Viscometers Ltd., Essex, UK) operated at 100 rpm (spindle no. 4) for 

comparison with molecular weight data. 

Proton NMR (Bruker AC 250 spectrometer, Bruker Corporation) was used to determine the ethylene 

content in the EPVOH and EPVOHc. The polymer samples were dissolved in D2O to a concentration 

of 5 wt% at 95°C.  

The viscosity of polymer-clay dispersions were recorded at 23°C using a controlled shear stress 

rheometer (Physica MCR 300, Physica Messtechnik GmbH, Ostfildern, Germany) in concentric 

cylinder geometry at shear rates in the range 1-4000 s
-1

. 

Film casting and measurement of thickness 

Films were cast by pouring 10.0 g polymer solution or EPVOH-clay dispersion in polystyrene Petri 

dishes with a diameter of 90 mm, followed by drying at 23°C and 50% RH for at least five days before 

any of the further treatments described below. Different film thicknesses were prepared by casting 

films using 10 wt% solutions further diluted with deionized water to produce 2, 4, 6 and 8 wt% 

solutions. Average film thicknesses were recorded using a thickness tester (Lorentzen & Wettre type 

532 G, Stockholm, Sweden) at least five locations on each film. After studying the effect of film 

thickness a size of 100 µm was chosen for analysis of selected film properties since water vapor- and 

oxygen transmission rates were found to reach a plateau level, i.e. further increases in film thickness 

led to no significant improvement. Reproducible and identical film thicknesses were achieved 

independently of polymer-clay composition.  

Water vapor transmission rate 

Water vapor transmission rates (WVTR) were measured by the gravimetric cup method (ASTM E96) 

using silica gel as desiccant and a climate chamber (C+10/200, CTS Clima Temperatur Systeme 

GmbH, Hechingen, Germany). Aluminum cups fitted with sample holders (lids) giving an exposed film 

area of 50 cm
2
 were used. The cups were firmly tightened by placing a rubber O-ring on one side of 

the film whereas silicon grease was used to prevent leakage between the film and the aluminum ring 

on the other side. Initial measurements with films of different thickness were carried out at 23°C and 

50% or 80% RH. Measurements were then performed on films with thickness of 100 μm at 23°C and 

with step-wise increases in relative humidity from 50 to 90% RH at 10% increments; the films were 

pre-conditioned for 16 hours at each RH level. 
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Oxygen transmission rate 

Oxygen transmission rates (OTR) were measured according to ASTM D3985-05 using a Mocon® 

OxTran® oxygen transmission rate tester, Model 2/21 (Mocon Inc., Minneapolis, MA, USA), equipped 

with a coulometric oxygen sensor. An adhesive aluminum foil mask was used to envelop the films, 

leaving an exposed test area of 5 cm
2
. The oxygen concentration in the test gas was 21% and the 

carrier gas was a blend of 98% nitrogen and 2% hydrogen. Measurements were carried out in 

duplicates at a constant temperature of 23°C and atmospheric pressure. 

The pure polymeric films were tested under step-wise increases in RH from 50% to 90% at 10 % 

increments by adjustment of the test gas and carrier gas humidifiers so that the same RH level was 

achieved on both sides. The accuracy of the RH sensor was ±3%. Samples were pre-conditioned in 

the test chambers for 10 hours at each RH level and measurements were performed until steady 

state was reached. The EPVOH-clay composite films were then tested at 50% and 80% RH.  

Hydrophobic character of film surfaces 

The hydrophobic character of dry polymer films was assessed by recording the static contact angle 

( ) of small liquid drops applied on the film surface at 23°C and 50% RH using a FTA 200 Dynamic 

Contact Angle Analyzer (First Ten Angstroms, Portsmouth, NH, USA). The spreading of the drop over 

the film surface was captured using a CCD camera over a time period from 0 to 80 seconds. All pure 

polymeric films were analyzed using three test liquids with varying polarity: deionized water and 

ethylene glycol (anhydrous, VWR International), were applied with a drop volume of 10 µl, whereas 

methylene iodide (Fluka Chemika GmbH, Switzerland) used a drop volume of 2.0 µl. Average contact 

angles were calculated from six replicates at the point where the contact angle versus time curves 

leveled out after the initial spreading period. This point was reached after about 10 seconds in the 

case of ethylene glycol and water whereas the contact angle was virtually constant over the whole 

test period in the case of methylene iodide. The resulting film surface energies s were calculated 

from the Young-Dupré equation, Equation (1), by inserting the different Lifshitz-van der Waals ��� 

dispersive interaction components (apolar character), and the electron acceptor, �+ (acidic) and 

electron donor �− (basic) surface energy components of the test liquids (van Oss 1994). The latter 

two components together form the Lewis acid-base interactions ஺஻ = ʹ√+− (polar character). 

The subscripts s and l represents solid and liquid, respectively. 

�ሺͳ + ���ሻ = ʹ (√������ + √�+�− + √�−�+)   (1) 

The surface energies of the EPVOH-clay composite films were determined using only those with 

highest filler content (12 pph), whilst contact angle measurements with deionized water were 

determined for all EPVOH-composite films and expressed as the normalized contact angle relative to 

the pure EPVOH film. 

Mechanical properties 

Test pieces of width 5 mm and length 60 mm were cut from the films of 100 µm thickness. The 

tensile strength (stress at break, b) in MPa, elongation (strain at break, b) in % and the Young’s 

(initial) modulus, E (MPa) were recorded on a Zwick/Roell tensile tester, model Z005 (Zwick GmbH & 
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Co KG, Ulm, Germany) with a load cell of 500 N. The distance between the clamps was 20 mm and 

the test speed was 100 mm/min. Testing was carried out at 23°C and 50% RH (i.e. no change 

compared to film preparation) for 12 test pieces from each film type. 

Film transparency, reflectance and gloss  

The transparency and reflectance of the films was recorded using a Minolta CM-3630 

spectrophotometer (Minolta Co. Ltd., Japan). Spectral reflectance curves were recorded in triplicate 

over the range 360-740 nm using a D65/10° illuminant with the top film surface directed towards 

the light source exposing an illumination area () of 30 mm. The transparency was evaluated by 

measuring the reflectance factor (%) of the films over a neutral white background, Rw, and the 

reflectance factor (%) over a black background, R0. The transparency T is defined by Equation (2): 

� = √ሺ�� − �଴ሻ · (ଵ଴ ଴଴଴�ሺ�ሻ − �଴)    (2) 

An opaque sheet of a matte, pigment coated paperboard was used as the neutral white background 

with reflectance factor R(w). The reflectance and color of composite films was measured over the 

white background and the reflectance values at each wavelength for the white background itself was 

subtracted before evaluation (i.e. Rw-R(w)). The reflectance and colour of the clay minerals was 

recorded by the same technique. A portion of each clay grade was close-packed into a Petri dish to 

form a planar, smooth layer on the bottom. The dishes were tightly closed and the optical properties 

were evaluated by inserting the dish in the spectrophotometer with the planar bottom facing the 

incident light. An empty Petri dish was used for blank measurements. The color was evaluated in 

terms of the CIELAB color space L*, a* and b* values, where L* represents the lightness and a* and 

b* are the chromaticity coordinates on the red-green and the yellow-blue axis respectively. 

The gloss of films was recorded using a Zehntner ZGM 1022 gloss meter (Zehntner GmbH Testing 

Instruments, Hoelstein, Switzerland), at an incident angle of 20° according to ISO 8254-3, applicable 

for highly glossy surfaces. The gloss was recorded at six points on the top surface of each film with a 

measurement area of 44.2 mm
2
. 

RESULTS AND DISCUSSION 

Characterization of polymers 

PVOH exhibits ~15% higher weight average molecular weight (MW) and ~11% higher polydispersity 

index (PD) compared to the EPVOH grades (Table 1). The recorded viscosity of 10 wt% solutions 

followed the variations in MW. The number average molecular weights (MN) were however very close 

between the three grades (only ~9% and ~7% higher for PVOH than for EPVOH and EPVOHc 

respectively); hence any observed variations in properties in this study has been attributed to the 

different chemical compositions, rather than the small differences in molecular weight.  

TABLE 1 Selected properties of poly(vinyl alcohol) grades. 

Polymer MW (g/mol) MN (g/mol) PD Viscosity (mPas) 

PVOH 71,500 35,500 2.01 980 

EPVOH 61,200 32,300 1.80 870 

EPVOHc 60,700 33,100 1.78 840 
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The molecular structure of PVOH contains both vinyl acetate and vinyl alcohol groups and the 

formula can thus be written –[CH2-CH(OCOCH3)]m–[CH2-CH(OH)]n– . In addition, EPVOH and EPVOHc 

contains ethylene groups and their formula can thus be written –[CH2-CH(OCOCH3)]m– [CH2-

CH(OH)]n–[CH2-CH2]o– , where the suffixes m, n and o corresponds to the number of each unit.
8
 Note 

that the degree of hydrolysis, i.e. the fraction of vinyl acetate at 1-2.5 mol% is similar for all grades. 

The relative amounts of ethylene were estimated by 
1
H NMR, the chemical shifts of selected peaks 

and their intensities are presented in Table 2. 

TABLE 2 Chemical shifts and peak intensities of the 
1
H NMR spectra. 

Chemical shift 

(ppm) 

Peak Intensity  

PVOH EPVOH EPVOHc Assignment 

1.4-1.7 2.190 2.402 2.396 -CH2-CH(OH)- in PVOH and 

EPVOH 

-CH2-CH2- in EPVOH 

3.2 0.010 0.005 0.005 -CH2-CH(OH) associated with 

end groups in PVOH and EPVOH 3.4 0.023 0.027 0.012 

3.6 0.023 0.023 0.022 

3.9 1.000 1.000 1.000 -CH2-CH(OH) in PVOH and 

EPVOH 

 

A broad range of peaks at 1.4-1.7 ppm were assigned to the methylene (–CH2) protons of the vinyl 

alcohol units, –CH2-CH(OH)-, in both PVOH and EPVOH and the protons of ethylene units, –CH2-CH2–, 

in the EPVOH. This observation is in line with Bastow et al. who reported methylene peaks at 1.65 

ppm for PVOH
23

 and de Souza and Tavares who identified the corresponding peaks for PVAc at 1.64 

and 1.71 ppm.
24

 Broad peaks centered at 3.9 ppm were attributed to the methine group of vinyl 

alcohol, –CH2-CH(OH) in agreement with Bastow et al.
23

 who reported it at 3.65 ppm and with 

tabulated data typically given at 3.3 – 4.0 (McMurry 1992). The intensity of this peak was 

normalized for each sample. Three sets of very low intensity peaks were observed for all samples 

centered at 3.2, 3.4 and 3.6 ppm. These possibly originate from the methine groups associated with 

vinyl alcohol groups present as end groups or bonded with vinyl groups. The total intensity for these 

three small peaks was identical for PVOH and EPVOH but slightly lower for EPVOHc. 

Combining the intensities of the sets of weak peaks between 3.2-3.6 ppm with the peak at 3.9 ppm 

and comparing with the peaks at 1.4-1.7 ppm show that the ratio of –CH to –CH2 in PVOH was close 

to 1:2, which is in line with the theoretically expected ratio.  

The peak intensities between 1.4-1.7 ppm were about 10% higher than those at 3.9 ppm for both 

EPVOH grades when compared to the pure PVOH. Taking the calculated ratio of –CH to –CH2 of 

1:2.02 from PVOH and subtracting the value 2.02 from the intensities of the 1.4-1.7 ppm peaks of 

EPVOH allowed the contribution from the ethylene groups to be calculated. By dividing the obtained 

values by the number of hydrogens in each unit, the mol% fraction of ethylene groups could be 

calculated. The resulting values were 8.1 mol% for EPVOH and 8.0 mol% for EPVOHc.  

Dispersion properties of EPVOH/clay blends 

Fresh solutions were used for film casting and evaluation of dispersion properties even though the 

viscosity of the 10 wt% EPVOH solution was found to be stable at room temperature and did not 
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change even after several months of storage. EPVOH blends containing Na-MMT and C-MMT also 

showed high viscostability and the dispersions remained visually homogeneous over several weeks 

at rest when stored in clear glass bottles at room temperature. However, the clay in Q-MMT/EPVOH 

blends was observed to settle almost immediately upon cessation of stirring and a significant 

fraction of the clay sedimented in the glass bottle after 24 hours. The Q-MMT particles however 

were readily re-dispersed by re-application of shear. This poor dispersibility of organomodified clays 

in hydrophilic solvents or water-soluble polymer solutions is typical, as demonstrated, for example, 

by Chang et al.
26

 

The compatibility of each clay grade at 3 pph with EPVOH was assessed by monitoring their effect on 

the dispersion viscosity. Figure 1 shows that the addition of Na-MMT resulted in the highest viscosity 

at all shear rates in the range 10-4000 s
-1

.  This reflects strong PVOH-clay interactions and indicates a 

high structural network and entanglement between polymer and clay, it also suggests a high single 

clay layer separation, i.e. a higher degree of exfoliation. Addition of C-MMT resulted in slightly lower 

viscosity than that for Na-MMT and reflects the different properties of the clay, i.e. its CEC and layer 

dimensions. It should be noted that clay-platelet interactions (edge-platelet or edge-edge 

interactions) as well as clay-polymer interactions can contribute to increased viscosity. The effect of 

Q-MMT was almost negligible since the blend viscosity practically overlapped that of pure EPVOH at 

all shear rates. The observation suggests that the Q-MMT particles were dispersed as microparticles 

(stacked clay layers) and not exfoliated, in the aqueous polymer solution.  

 

FIGURE 1 Viscosity as a function of shear rate for EPVOH and EPVOH-clay blends comprising 3 pph filler. 

The pure EPVOH solution as well as all EPVOH-clay blends showed a shear thinning behavior over the 

range of shear rates investigated. Sinha Ray et al. showed that at high shear rates, the viscosity of 

poly(butylene succinate)-layered silicate nanocomposites were comparable to that of the pure 

polymer.
27

 They suggested that the silicate layers are strongly oriented towards the flow direction at 

high shear rates, thus the flow properties are dominated by that of the pure polymer. The same 

explanation is believed to account for the behavior observed here. 

The interrelationship among the three clays in terms of the viscosity effects depicted in Figure 1 was 

maintained also at addition levels of 6, 9 and 12 pph. However, for all three clays, a decrease in 
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viscosity was found with increasing amounts of filler, which is illustrated by the data for the 

EPVOH/C-MMT blends in Figure 2. 

 

FIGURE 2 Viscosity as a function of shear rate for EPVOH/C-MMT blends. 

Since the total solids content was kept constant in all formulations, the concentration of polymer 

decreased from 10.0 to 8.9 wt% as the clay concentration increased from 0 to 12 pph filler. It is 

known that the viscosity of aqueous solutions of fully hydrolyzed grades of poly(vinyl alcohol) 

increase rapidly with increased concentration.
28

 For example, an increase from 2.5 wt% to 15 wt% 

can result in a viscosity increase by a factor of 1000 for polymers with intermediate molecular 

weight. Entanglements between individual molecules are formed above a first critical concentration 

corresponding to 2-4 wt% and the formation of a completed network structure is assumed to occur 

above a second critical concentration, i.e. above 10-20 wt%.
28

  

A small change in polymer concentration may therefore have a large impact on the dispersion 

viscosity and so to assess this, a separate experiment with continuous dilution of the EPVOH solution 

from 10 to 8 wt% was performed. A linear relationship between polymer concentration and viscosity 

was found at all shear rates investigated. Plotting the viscosity of the EPVOH/C-MMT blends against 

the actual concentration of polymer in the range 3-12 pph C-MMT revealed a linear relationship and 

the calculated relative viscosity (ηblend/ηpolymer) was around 1.25 at 1000 s
-1

 and around 1.16 at 4000 s
-

1
 for all clay addition levels, i.e. the viscosity profile mainly followed the polymer concentration and 

approached the viscosity of the pure polymer when the shear rate increased. For EPVOH/Na-MMT 

the relationship was linear only at the highest shear rates (above 1000 s
-1

), which indicated a 

stronger interaction of Na-MMT with EPVOH at the lower shear rates. This means that higher shear 

forces are required to reach a point where a potential break-up of the network structure established 

between the Na-MMT particles and the polymer will take place. The corresponding ηblend/ηpolymer 

values for EPVOH/Na-MMT blends were 1.35 and 1.22 at 1000 s
-1

 and 4000 s
-1

, respectively.  

Obviously, the relative viscosities being greater than 1 over the entire range of addition levels 

confirm that C-MMT and Na-MMT have an impact on the blend viscosity, i.e. the reduction in 

viscosity with increased amount of filler cannot solely be explained by a reduction in the polymer 

content. There is a decrease due to the decrease in polymer content, but this is offset (i.e. a relative 
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increase in viscosity) by the addition of clay. The addition of clay is expected to increase viscosity, 

but the disruption of the polymer entanglement by the clay has a greater impact on the viscosity. 

Furthermore, the higher values of ηblend/ηpolymer for Na-MMT indicate stronger interactions with 

EPVOH for this clay grade over C-MMT. 

Even though a decrease in viscosity was also found as the amounts of Q-MMT increased the 

EPVOH/Q-MMT blends displayed no linear relationship between the actual polymer concentration 

and viscosity at either low or high shear rates. The average ηblend/ηpolymer values were close to 1. This 

observation can be explained by a break-up or hindering of the formation of entanglements of 

polymer chains by the presence of increased amount of clay dispersed in the polymer, thus leading 

to a decrease in apparent formulation viscosity, probably equally compensated by an increase in 

viscosity due to the addition of clay.  

Investigation of the distribution of clay layers within dried composite films by means of XRD and FTIR 

confirmed that the observed variations in interaction between EPVOH and clays in the wet state had 

great impact on the final film properties.
29

 

It has been reported that layered silicates (not organomodified) remain in a colloidal suspension 

within an aqueous solution of PVOH; after slow drying (in air), they are embedded in a PVOH gel to 

form an exfoliated nanocomposite material.
12,16

 The same authors also state that after intense 

drying to remove all water (in vacuo) and with clay concentrations >5-10 wt% the silicate layers re-

aggregate to form intercalated structures (stacks) due to platelet-platelet attraction forces. Some 

single clay platelets however do not re-aggregate due to steric hindrance and remain 

disordered/exfoliated. At clay concentrations <5-10 wt% intercalated structures are less apparent 

but the platelets are disordered and/or separated, which is due to the incorporation of higher 

quantities of PVOH between the layers overcoming the platelet-platelet attraction forces. 

Water vapor transmission rate 

Figure 3 shows the effect of film thickness on WVTR values for the EPVOH films. It is evident that at 

50% RH the transmission rate is almost independent of film thickness, whereas at 80% RH a steep 

decrease in WVTR values with increased film thickness is observed, which levels out at about 50 µm. 

The equilibrium moisture content in the films was 8.2% and 14.8% at these two relative humidities 

respectively.
29

 The water vapor permeability (WVP) of the EPVOH films was calculated by dividing 

the recorded WVTR by the saturation vapor pressure at the actual test temperature and the RH 

gradient on each side of the films, assuming 0% RH inside the cups, and multiplying the value 

obtained with the actual film thickness. Plotting the (WVP) in g/Pa·s·m at 80% RH against film 

thickness confirmed a linear relationship (r
2
=0.99), which is commonly seen with hydrophilic films.

30
 

McHugh et al. explained this effect by the non-linear nature of hydrophilic film sorption isotherms 

due to increased resistance to mass transfer with increased film thickness.
30

  

Figure 4 shows the WVTR values of 100 μm thick films as a function of relative humidity for the 

selected polymer grades. The transmission rate trends are in line with expectations in that the LDPE 

and PET reference films are unaffected by RH, whereas the steepest increase in WVTR which started 

at about 80% RH was found for the PVOH film. At the highest relative humidity (90% RH), a clear 

difference between the polymers was observed; the EPVOH grade was the most effective in 
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suppressing the increased transmission of water vapor molecules and so was selected for analysis by 

other techniques with respect to filler addition. 

 

 

FIGURE 3 WVTR of EPVOH films as a function of film thickness at two relative humidities. Average of three 

measurements. Error bars represents standard deviation. 

Additional WVTR measurements at closer RH intervals (70, 75, 80 and 85%; Figure 4 - insert) 

confirmed that the RH level at which the differences become appreciable is 80% RH. Analysis of the 

moisture uptake at different RHs showed that PVOH absorbs moisture more rapidly than EPVOH, 

especially at RH 80%
29

, thus opening a path for more rapid permeation of water vapor through the 

film structure. 

 

FIGURE 4 WVTR as a function of relative humidity in the range 50-90% RH for PVOH, EPVOH grades (film 

thickness ~100 µm), together with that for the LDPE (30 µm) and PET (12 µm) reference films. WVTR in the 

range 70-85% RH for PVOH and EPVOH (insert). Average of three measurements. 
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Oxygen transmission rate 

The OTR values were also found to level out at a film thickness around 50 µm when measured at 

80% RH (Figure 5). The calculated OP values were found to follow an almost linear (r
2
=0.90) increase 

with thickness. The similar trends observed in the WVTR and OTR data reflects the fact that they are 

both dependent on the amount of water present in the films (and thus polymer swelling); this is 

discussed further in a second paper by the authors
29

 together with the effects of the clay fillers on 

oxygen and water vapor barrier properties as well as their distribution within the selected polymers.  

 

FIGURE 5 OTR of EPVOH films at 80% RH as a function of film thickness. Average of two measurements. 

Figure 6 shows the OTR as a function of relative humidity for the three polymer grades with film 

thickness of 100 μm. The results follow the same trends as in the WVTR measurements, with an 

increase in the oxygen transmission rate starting at around 80% RH. 

Concurrent with the WVTR data, EPVOH provided the highest oxygen barrier properties at high RH 

compared to the other two grades. Moreover, the OTR value for EPVOH was significantly lower (by 

over an order of magnitude) compared with the other two polymers. 
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FIGURE 6 OTR of PVOH and EPVOH films as a function of relative humidity. Average of two measurements. 

The corresponding OTR values recorded for the reference films were 1278 cm
3
/m

2
·d (LDPE) and 19 

cm
3
/m

2
·d (PET) and were unaffected by RH (film thicknesses of 30 and 12 μm, respectively). Divided 

through by film thickness to express OTR values as oxygen permeability, the values were 378 

cm
3
·cm/m

2
·d·bar (LDPE), 2.2 cm

3
·cm/m

2
·d·bar (PET), 11.3 cm

3
·cm/m

2
·d·bar (PVOH) and 2.4 

cm
3
·cm/m

2
·d·bar (EPVOH). This means that the OP of EPVOH (at 80% RH) was more than two orders 

of magnitude lower than for LDPE, and comparable to PET. 

Hydrophobic character of film surfaces 

The measured contact angles for the various test liquids and the corresponding total surface 

energies with their components for the films without fillers are shown in Table 3. The total surface 

energies (s) for the LDPE and PET reference films were 42.4 and 45.2 mJ/m
2
, respectively. The 

relatively high sand weak polarity (�஺஻ ~1.9 mJ/m
2
) of the LDPE film compared to tabulated data (s 

33.0 and �஺஻ 0 mJ/m
2
; van Oss (1994)) is attributed to the oxidation of the surface by Corona 

discharge. The value of sfor the PET reference film lies close to values commonly given in the 

literature. PVOH and EPVOHc exhibited similar contact angles for each of the three test liquids and 

consequently similar s values of about 49 mJ/m
2
. EPVOH showed higher contact angles for water 

and ethylene glycol (i.e. the polar test liquids) than PVOH or EPVOHc, and hence a lower s (47 

mJ/m
2
). van Oss (1994) reported values for poly(vinyl alcohol) with sof 42 mJ/m

2
,
 
 ���= 42, �+ = 0 

and �− in the range 17-57 mJ/m
2
when measured at 20°C. However, a strict comparison with tabular 

data requires films prepared using the same method, and measurements performed under the same 

conditions, with the same test liquids. EPVOH showed a lower polar (�஺஻) character than PVOH and 

EPVOHc but similar to that of PET. The lowest polar character was, as expected, shown for the LDPE 

film.  
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TABLE 3 Top: Contact angles of polymer films with various test liquids. Average from six measurements with 

standard deviation. Bottom: resulting surface energies for the solid surfaces and their apolar and polar 

components. The last three columns refer to EPVOH films with 12 pph Q-MMT, C-MMT and Na-MMT, 

respectively. 

Liquid Contact angle (°) 

Polymer films Clay-polymer films (12 pph) 

PVOH EPVOH EPVOHc LDPE PET Q-MMT C-MMT Na-MMT 

Water 58.1 ± 3.0 67.8 ± 2.3 59.3 ± 1.8 82.9 ± 3.2 65.9 ± 2.6 65.4 ± 1.0 72.7 ± 0.6 77.2 ± 2.6 

Ethylene glycol 25.8 ± 0.7 34.1 ± 1.3 23.8 ± 2.3 61.8 ± 0.4 54.1 ± 1.5 33.7 ± 2.9 35.7 ± 1.7 29.6 ± 0.7 

Methylene 

iodide 

29.0 ± 1.3 31.5 ± 1.3 29.9 ± 06 38.2 ± 1.6 36.7 ± 2.4 38.3 ± 1.6 37.4 ± 0.7 41.8 ±3.5 

 Surface Energies (mJ/m
2
) s 49.2 47.2 49.6 42.4 45.2 45.4 45.0 43.4 

���
 44.6 43.6 44.3 40.5 41.2 40.5 40.9 38.0 

�஺஻
 4.6 3.6 5.3 1.9 3.9 4.9 4.9 4.5 

�+ 0.29 0.30 0.42 0.13 0.18 0.46 0.46 1.68 

�− 18.5 10.8 16.6 6.7 21.6 13.3 13.3 3.0 

 

Figure 7 shows the dataset representing normalized contact angle of water, relative to that of the 

unfilled film, as a function of filler concentration for the three clays. The average contact angles for 

water from the six replicates recorded on EPVOH-clay composite films expressed standard 

deviations within ± 3.9. The contact angle did not change markedly with the addition of Na-MMT 

and C-MMT, presumably because the top-most surface properties are dominated by the polymeric 

matrix; this could be anticipated because of the likelihood of the polymer to adsorb on the clay 

surface. A similar decrease in contact angle was observed with addition of 3-12 pph Q-MMT, 

showing a more polar surface and is attributed to enrichment of excess organomodifier at the film 

surface.  

 

FIGURE 7 Normalized contact angles to water for EPVOH films as a function of filler addition. Average of six 

measurements with standard deviation. 
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Since the variations in contact angles with water and different clay concentrations were low within 

each clay series, surface energies from all three test liquids were determined using only the 

composite films comprising 12 pph filler (Table 3). 

The total surface energies (s) were quite similar between the three clay composite films and slightly 

lower than the pure EPVOH. Q-MMT and C-MMT composites showed similar values of ���, whereas 

a lower value was obtained for Na-MMT indicating a lower apolar character for the latter, 

presumably reflecting the differences in elemental composition and CEC of the clays.
29

 The polar 

character (�஺஻) was lower for the unfilled film than for all three clay composite films. The tendency 

to act as an electron donor (�−) was lower for C-MMT and Na-MMT composite films compared to 

the pure EPVOH, whereas that of the Q-MMT composite film was higher than the unfilled film. 

The addition of a non-polar organomodifier as in the case of Q-MMT could be expected to result in a 

more non-polar surface of the composite film, but the opposite effect was observed here, i.e. a 

lower ���and higher �஺஻ for the Q-MMT composite film compared to the pure EPVOH film. This is 

possibly explained by the hydrophobic Q-MMT particles being located in the bulk of the film 

combined with the enrichment of excess surfactant modifier at the film surface, the increased 

polarity could arise from the polar ammonium head groups being preferentially directed towards the 

surface of the film, whilst the long alkyl chains reside in the film interior. The distribution of different 

species throughout the film is the topic for an ongoing research study.
29

 

Mechanical properties 

Figure 8 shows a) the YouŶg’s modulus (E), b) the tensile strength (stress at break, b) and c) the 

elongation at break (strain at break, b) for EPVOH films as a function of filler content for the 

different clays. E increased strongly with increased filler content from about 1580 MPa for the 

unfilled film to about 3000 MPa at 12 pph C-MMT or Na-MMT. For Q-MMT, the E-values began to 

level out at around 2500 MPa with a clay loading of 6 pph or higher. 

At the lowest addition level, the modulus was slightly higher for Q-MMT than for the corresponding 

composite comprising Na-MMT, but similar to C-MMT. Chang et al. reported an analogous effect on 

the modulus when comparing organomodified montmorillonite with a Na-exchanged counterpart 

and explained this effect by promotion of a better orientation of the PVOH chains in a composite 

due to the presence of flexible alkyl groups in the organomodified montmorillonite.
26

 The modulus 

of a composite material can in essence be regarded as the combined moduli of each individual 

component, where montmorillonite itself exerts an inherent modulus of 170 GPa (supplier 

information). In addition, modulus as well as tensile strength is also dependent on the polymer 

crystallinity, how well the two components bond together and in the case of these two factors being 

equal the extent of clay dispersion, i.e. intercalated or exfoliated.
12,31

 An increase in modulus with 

small additions of clay and exfoliation can therefore be explained by nano-scale reinforcement due 

to the enhanced interfacial area of montmorillonite.
31

 McGlashan and Halley also pointed out that at 

high clay loadings and with intercalation or microparticles, a higher amount of tactoids acting as 

stress focal points and potential sites for mechanical failure may emerge.
31

 The relatively high values 

of Young´s modulus for the EPVOH/Q-MMT composite films over the entire range of filler additions 

is thus somewhat unexpected since XRD analysis indicated less well dispersed clay platelets in this 

case
29

, probably the formation of a microcomposite. The Q-MMT composites thus expressed a less 
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pronounced enhancement in interfacial area compared to Na-MMT or C-MMT composites, and 

presumably an increased risk of failure at high clay loadings.  

The tensile strength did not show any significant variations as a function of filler addition. For C-

MMT the b values varied between 60-70 MPa, with no clear trend related to the filler level. For the 

other two clays, a weak minimum was found at 3 pph Q-MMT and at 6 pph Na-MMT, respectively. 

Strawhecker and Manias
16

 reported that max of PVOH composite films were rather insensitive to the 

filler concentration in the range 0-10 wt% MMT whereas Chang et al. found that the ultimate tensile 

strength of poly(vinyl alcohol) hybrids increased from ~105 to 175 MPa with increased clay content 

from 0 to 8 wt%.
26

 However, they also showed a maximum in tensile strength with 6 wt% clay 

modified with 12-aminoauric acid ammonium chloride that reduced at higher clay loadings and was 

ascribed to agglomeration of organoclay particles. The Mw of the polymer should also have impact 

on the mechanical properties at different filler levels but unfortunately the Mw of the PVOHs used 

were not stated in any of the reports cited above.  

The elongation at break was high for the unfilled EPVOH film, about 250%, which is higher than 

elongation values around 200% that have been reported for fully hydrolyzed PVOH grades with an 

intermediate degree of polymerization
19

 and for EVOH films with 27 mol% ethylene.
7
 With increasing 

addition of C-MMT and Na-MMT the b decreased rapidly, this was more evident for Na-MMT and b 

values reached below 50% at 12 pph Na-MMT. A similar reduction was reported for PVOH-MMT 

composite films by Strawhecker and Manias
16

 and by Chang et al.
26

 Thus, addition of C-MMT and Na-

MMT fillers strongly increases the brittleness of the films. However, the Q-MMT films showed b 

values maintained above 170% at all filler levels. The steep increase in b at the highest addition of 

the organoclay is unexpected since a high value of b is often associated with a low modulus or 

tensile strength or vice versa. However, McGlashan and Halley also reported a simultaneous increase 

iŶ YouŶg’s ŵodulus aŶd straiŶ at ďreak ǁith iŶĐreased orgaŶoĐlay load ǁheŶ added to starĐh-

polyester blends and related this to the formation of a more amorphous blend that deforms 

plastically rather than failing through brittle fracture.
31

 However, evidence of such a change in 

behavior could not be extracted directly from stress-strain curves in the present study and a detailed 

investigation would require microscopic analysis of the fractured surfaces in combination with a 

proper evaluation of film crystallinity. With 12 pph Q-MMT, b occurred at the same level as for the 

unfilled EPVOH while E was maintained at about 1000 MPa higher than for pure EPVOH (Figure 8a). 

This finding may be related to a plasticizing effect of the surfactant chains at high organoclay 

loadings.
9
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a) 

 

b) 

 

c) 

 
FIGURE 8 a) YouŶg’s ŵodulus, ď) teŶsile streŶgth aŶd Đ) eloŶgatioŶ at ďreak as a fuŶĐtioŶ of filler ĐoŶteŶt for 

EPVOH films. Average from 12 measurements. Error bars represent standard deviations. 
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Transparency 

The transparency of the pure EPVOH film was 99.8% whilst values for LDPE, PET and PVOH reference 

films were 97.7, 99.5 and 99.8%, respectively. By visual inspection, it was evident that the films 

became slightly hazy when clay was added and that the transparency reduced with increased filler 

addition. It could be noted that composite films with 3 pph C-MMT or Na-MMT were visually 

comparable to that of the LDPE film, with only slightly lower ability to see through the former films 

due to their higher thickness. This observation is also supported by their similar percentages of 

transparency (97.0 and 96.4% for C-MMT and Na-MMT, respectively). 

The decrease in transparency with increased filler content was much more pronounced with the C-

MMT and Na-MMT grades than with Q-MMT (Figure 9). The formation of opaque films is governed 

by the presence of particles that are larger than the wavelength of visible light, i.e. particles large 

enough to effectively hinder the transmission of light through the film. Strawhecker and Manias
16

 

observed reduced transmittance of UV light with increased load of clay and assigned this to the 

lateral size of montmorillonite particles. An even distribution of single clay layers throughout the film 

and arrangement of the platelets parallel to the surface of the film would be more effective in 

hindering the light from being transmitted through the film, similarly to the theories for formation of 

tortuous paths for permeating molecules.
32

 In contrast, a random distribution of single clay layers at 

low loadings with random orientation would lead to a more transparent film. Q-MMT showed the 

smallest effect on opaqueness despite having the largest layer diameter (500 nm) suggesting the 

presence of any single clay layers, clay-layer stacks or agglomerated clay-layer stacks were randomly 

distributed through the films. It should be considered that ~43 wt% of Q-MMT consists of organic 

material (value obtained from thermogravimetric analysis) and so there is effectively less clay 

present in these composites compared with addition of an equal weight fraction of C-MMT or Na-

MMT. However, even if this was accounted for, the transparency values were still significantly higher 

than with the other clays. In addition, since the transparency was monitored over a relatively large 

area of the film surface ( 30 mm gives an illumination area of >700 mm
2
) for each reading, the 

potential presence of regions rich in clay agglomerates, i.e. large particles that would have a major 

impact on the light transmitted, are confidently eliminated in the evaluation. Thus, the low impact of 

Q-MMT compared to Na-MMT and C-MMT on the film transparency as well as the lack of visible 

agglomerates indicates that the clay was evenly distributed on a sub-micron level, further 

investigation
29

 has shown that the Q-MMT clay is not exfoliated, but intercalated. 
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FIGURE 9 Transparency of composite films as a function of filler addition. 

Colour 

Visually, the films appeared increasingly yellow in colour with increasing filler addition, a trend which 

was strongest for the films containing C-MMT filler, followed by Q-MMT and finally Na-MMT. No 

changes in the spectral reflectance curves in the range 540-740 nm were noted for any of the 

composite samples when compared to EPVOH, but differences were observed in the range 360-540 

nm (Figure 10). Similar findings were reported from UV/vis transmittance spectra of PVOH/Na-MMT 

composites in the visible region (400-700 nm) (Strawhecker and Manias 2000). The largest 

reflectance differences in the EPVOH composites were found in the low wavelength range, i.e. 360-

440 nm, which corresponds to the upper ultraviolet region (360-380 nm) and the violet region (380-

440 nm) of the visible spectrum. Within these ranges, the reflectance was found to decrease with 

increased content of filler, but remained constant at 9 and 12 pph for the Q-MMT and C-MMT 

samples indicating a saturation level was reached. Consistently, the effect on reflectance from the 

clays in the low wavelength range was highest for C-MMT, followed by Q-MMT and Na-MMT. 

Increased reflection of yellow light by the incorporation of fillers corresponds to an increased 

absorption of the complementary color, violet-blue light; the reflectance in this wavelength range 

therefore decreased with increasing amount of clay particles having a yellow tint. The absorption of 

light is also related to particle size, but no correlation was observed with respect to the clays 

diameter or perceived extent of exfoliation, intercalation or presence of micro-particles.  
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a) 

 

b) 

 

 

c) 

 
FIGURE 10 Reflectance curves for composite films comprising a) Q-MMT, b) C-MMT and c) Na-MMT. 
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The colour differences observed in composite films were compared to the colour properties of the 

pure clay powders. The shape of the reflectance curves for Na-MMT and Q-MMT were similar over 

the entire range of wavelengths and their lightness values, L*, which are related to reflectance in the 

mid-range of the visible spectrum
33

 were around 86. The C-MMT clay, however, showed lower 

reflectance at all wavelengths and a lower L* value of 75. Both Q-MMT and Na-MMT showed 

negative a* values with Na-MMT (a* -0.94) exhibiting a more greenish shade than Q-MMT (a* -

0.67). C-MMT on the other hand showed redness (a* 1.44). All three clays had positive b* values; 

11.44 (Q-MMT), 13.36 (C-MMT) and 10.43 (Na-MMT) supporting a measure of their yellowness. The 

colour differences are related to the presence of iron and/or other colored ion impurities in the 

lattice structure of clay (or mineral impurities) rather than on cation exchange sites. Corresponding 

colour differences were also reflected in the visual appearance of the films comprising different 

fillers. 

Gloss 

Measurements of gloss determined from the film side in contact with air are presented in Figure 11 

for the EPVOH composite films containing 3 pph filler alongside those of the pure polymer films. 

EVOH films are recognized for their very high gloss.
7
 Indeed the EPVOH films exhibited 104 gloss 

units on average, almost equal to the highly glossy PET reference film and slightly higher than the 

PVOH film. LDPE on the other hand had low gloss (around 20). EPVOH composite films containing 

the hydrophobic modified Q-MMT showed high gloss over the entire range of loadings (23-86 gloss 

units for 12-3 pph Q-MMT, respectively) whereas the respective films containing C-MMT had a semi-

glossy appearance (7-12 gloss units) and the Na-MMT films had a matte finish (3-4 gloss units).  

Gloss is a property that is controlled by the topmost surface properties. Incorporation of fillers may 

lead to a slight increase in the micro scale surface roughness which could partially explain the 

observed decrease in gloss compared to the unfilled film. The data may also give some information 

about the distribution of clay particles. The lower gloss obtained for composite films comprising C-

MMT and Na-MMT indicate the location of clay particles near the topmost surface whereas that for 

the Q-MMT composite indicates the clay particles are below the topmost surface, which was 

evidenced also by FTIR analysis
29

 of the films. This correlates with the contact angle measurements 

in that the Q-MMT had more polar character and was more similar to that of the pristine EPVOH. 
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FIGURE 11 Gloss values for reference films and EPVOH composite films comprising 3 pph filler. 

Summary  

The hydrophilic C-MMT and Na-MMT clays were readily dispersed in an aqueous solution of EPVOH. 

Na-MMT was observed to have a higher impact on the dispersion viscosity, indicative of a stronger 

interaction with EPVOH as compared to C-MMT. Q-MMT however seemed to be less compatible 

with this hydrophobically modified polymer. Analysis of water vapor- and oxygen transmission rates 

demonstrated that the moisture sensitivity of the polymers became apparent at 80% RH but that 

EPVOH provided lower transmission rates compared to the conventional PVOH and EPVOHc grades. 

Both WVTR and OTR of EPVOH films started to level out at a film thickness equal to and greater than 

50 µm. EPVOH films provided an oxygen barrier comparable to that of a commercial PET packaging 

film. Investigation of the film surfaces by contact angle measurements revealed a lower polar 

character of EPVOH compared to that of PVOH. Addition of C-MMT or Na-MMT in the range 3-12 

pph did not change the contact angle to water for EPVOH to any greater extent, hence suggesting 

that the topmost film surface is dominated by the polymeric matrix. The finding that a film with 12 

pph Q-MMT showed higher polarity compared to the unfilled EPVOH film was ascribed to 

enrichment of excess surfactant modifier at the film surface. 

Addition of 12 pph C-MMT or Na-MMT resulted in an almost two-fold increase in Young´s modulus 

of the EPVOH film. However, the elongation at break decreased rapidly from about 250% for the 

unfilled film to about 50% at the highest load of these clays. On the other hand, addition of Q-MMT 

resulted in b values above 170% at all filler levels, while E was maintained around 2500 MPa. This 

simultaneous impact on b and E might be related to plasticization caused by the excess surfactant 

present in Q-MMT. 

Incorporation of the bentonites caused a stronger reduction in transparency in the case of C-MMT 

and Na-MMT thus indicating a more even distribution of clay mineral platelets within these 

composites. In contrast, the high transparency of Q-MMT-films at all addition levels suggests a 

random distribution of clay mineral stacks with a high level of light transmission through regions 

poor in filler material. The reflectance of composite films in the low wavelength range was found to 
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decrease with increased filler addition and the effect was strongest for the C-MMT clay which 

exhibited the most intense color in terms of redness and yellowness. 

The semi-glossy and matte surfaces of C-MMT and Na-MMT composite films respectively indicated 

the location of clay particles near the topmost surface in these cases whereas the high gloss for Q-

MMT composite films suggested that the clay particles were more deeply buried within the films. 

CONCLUSIONS 

This study showed that a hydrophobically modified poly(vinyl alcohol) (EPVOH) was more effective 

than conventional PVOH in terms of water vapor and oxygen barrier properties at high relative 

humidities. EPVOH films having oxygen permeability comparable to that of a biaxially oriented PET 

packaging film even at 80% RH could be produced. Composite films with three different 

montmorillonites were successfully formed, all of which showed a strong increase in Young´s 

modulus with increased addition of clay. The organomodified clay proved to be effective at low 

addition levels in terms of maintaining high elongation at break, high transparency (>98%) and high 

gloss. Addition of high loads of Q-MMT are believed to form aggregates or microcomposites, in 

which the layered silicate is present as tactoids distributed in the polymer matrix but without 

separation of the individual layers.  

The study also demonstrated how relatively simple and rapid measurement techniques like 

spectrophotometry and surface gloss can give useful information about the effects of various 

montmorillonite types and clay loadings on the colour, transparency and distribution of filler 

material when incorporated in a polymer film.  
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