39 research outputs found

    Implementation of a Non-Metallic Barrier in an Electric Motor

    Get PDF
    A motor for use in a volatile environment includes a rotor exposed to the volatile environment, electronics for rotating the rotor, an impervious ceramic barrier separating the electronics and the rotor, and a flexible seal for preventing the volatile environment from contacting the electronics and for minimizing vibratory and twisting loads upon the barrier to minimize damage to the barrier

    A Genome-Wide Characterization of MicroRNA Genes in Maize

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR–RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with ∼35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes

    Comparison of the structural dynamic and mitochondrial electron-transfer properties of the proapoptotic human cytochrome c variants, G41S, Y48H and A51V

    Get PDF
    Mitochondrial cytochrome c is associated with electron transfer in the respiratory chain and in apoptosis. Four cytochrome c variants have been identified in families that suffer from mild autosomal dominant thrombocytopenia, a platelet disorder associated with increased apoptosis. Three out of the four substitutions, G41S, Y48H and A51V are located on the 40–57 Ω-loop. The G41S and Y48H variants perturb key physicochemical and dynamic properties that result in enhanced functional features associated with apoptotic activity. Herein we characterise the ferric A51V variant. We show by chemical denaturation that this variant causes the native state to be destabilized. Through azide binding kinetics, the population of a pentacoordinate heme form, whereby the Met80 axial ligand is dissociated, is estimated to be of equal magnitude to that found in the Y48H variant. This pentacoordinate form gives rise to peroxidase activity, which despite the similar pentacoordinate population of the A51V variant to that of the Y48H variant, the peroxidase activity of the A51V variant is suppressed. Far-UV circular dichroism spectroscopy and pH jump studies, suggest that a combination of structural and dynamic features in addition to the population of the pentacoordinate form regulate peroxidase activity in these disease variants. Additionally, the steady-state ratio of ferric/ferrous cytochrome c when in turnover with cytochrome c oxidase has been investigated for all 40–57 Ω-loop variants. These studies show that the lower pKa of the alkaline transition for the disease causing variants increases the ferric to ferrous heme ratio, indicating a possible influence on respiration in vivo

    HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis

    Get PDF
    Molecular chaperones play key roles during growth, development, and stress survival. The ability to induce chaperone expression enables cells to cope with the accumulation of nonnative proteins under stress and complete developmental processes with an increased requirement for chaperone assistance. Here we generate and analyze transgenic mice that lack the cochaperone HSPBP1, a nucleotide-exchange factor of HSP70 proteins and inhibitor of chaperone-assisted protein degradation. Male HSPBP1(−/−) mice are sterile because of impaired meiosis and massive apoptosis of spermatocytes. HSPBP1 deficiency in testes strongly reduces the expression of the inducible, antiapoptotic HSP70 family members HSPA1L and HSPA2, the latter of which is essential for synaptonemal complex disassembly during meiosis. We demonstrate that HSPBP1 affects chaperone expression at a posttranslational level by inhibiting the ubiquitylation and proteasomal degradation of inducible HSP70 proteins. We further provide evidence that the cochaperone BAG2 contributes to HSP70 stabilization in tissues other than testes. Our findings reveal that chaperone expression is determined not only by regulated transcription, but also by controlled degradation, with degradation-inhibiting cochaperones exerting essential prosurvival functions

    Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3)

    No full text
    A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting that these two etiologic factors may act through a common biochemical mechanism. However, their role in neuron biology and in MND is not understood. In a yeast two-hybrid screen, we identified the DEAD box protein Ddx20 (gemin3, DP103) as interacting partner of HspB8. Using co-immunoprecipitation, chemical cross-linking, and in vivo quantitative fluorescence resonance energy transfer, we confirmed this interaction. We also show that the two disease-associated mutant HspB8 forms have abnormally increased binding to Ddx20. Ddx20 itself binds to the survival-of-motor-neurons protein (SMN protein), and mutations in the SMN1 gene cause spinal muscular atrophy, another MND and one of the most prevalent genetic causes of infant mortality. Thus, these protein interaction data have linked the three etiologic factors HspB8, HspB1, and SMN protein, and mutations in any of their genes cause the various forms of MND. Ddx20 and SMN protein are involved in spliceosome assembly and pre-mRNA processing. RNase treatment affected the interaction of the mutant HspB8 with Ddx20 suggesting RNA involvement in this interaction and a potential role of HspB8 in ribonucleoprotein processing
    corecore