860 research outputs found

    Understanding the effect of seams on the aerodynamics of an association football

    Get PDF
    The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005

    The influence of surface characteristics on the tribological interactions at the shoe-surface interface in tennis

    Get PDF
    During dynamic tennis specific movements, such as accelerating and side stepping, the traction provided by a shoe-surface combination plays an important role in the injury risk and performance of the player. Acrylic hard court tennis surfaces have been reported to have increased injury occurrence due to an increased traction coefficient. There is a requirement for an improved scientific understanding of the tribological interactions at the shoe surface interface and the effects footwear and surface parameters have on the friction mechanism developed. Often mechanical test methods used for the testing and categorisation of playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict human response to the surface. A new traction testing device, discussed in this paper, has been developed to mechanically measure the traction force between the shoe and the surface under appropriate loading conditions. Acrylic Harcourt tennis surfaces generally have a rough surface topography, due to a sand and acrylic paint mixed top coating, and have a deformable under layer to provide impact attenuation. Surface micro-roughness has been found to influence the friction mechanisms presents during viscoelastic contacts, as found in footwear-surface interactions. This paper aims to further understand the influence of micro-roughness on tennis surfaces. The micro-roughness and traction of a controlled set of acrylic hard court tennis surfaces have been measured. The influence of roughness on tennis surfaces traction is discussed

    A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment

    Get PDF
    The intestine is a complex tissue with a characteristic three-dimensional (3D) crypt-villus architecture, which plays a key role in the intestinal function. This function is also regulated by the intestinal stroma that actively supports the intestinal epithelium, maintaining the homeostasis of the tissue. Efforts to account for the 3D complex structure of the intestinal tissue have been focused mainly in mimicking the epithelial barrier, while solutions to include the stromal compartment are scarce and unpractical to be used in routine experiments. Here we demonstrate that by employing an optimized bioink formulation and the suitable printing parameters it is possible to produce fibroblast-laden crypt-villus structures by means of digital light projection stereolithography (DLP-SLA). This process provides excellent cell viability, accurate spatial resolution, and high printing throughput, resulting in a robust biofabrication approach that yields functional gut mucosa tissues compatible with conventional testing techniques.Copyright © 2023 Elsevier B.V. All rights reserved

    New fitting scheme to obtain effective potential from Car-Parrinello molecular dynamics simulations: Application to silica

    Full text link
    A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of alpha-quartz are well-reproduced, showing the transferability of the new potential.Comment: 6 pages, 5 figure

    Electron-loss and target ionization cross sections for water vapor by 20-150 keV neutral atomic hydrogen impact

    Full text link
    A complete set of cross sections is reported for the ionization of water molecules by neutral atomic hydrogen impact at velocities of the order of the Bragg peak. The measured relative cross sections are normalized by comparison with proton impact results for the same target conditions and previous absolute data. Event by event coincidence analysis of the product ions and the projectile enables partial cross sections for target ionization and target plus projectile ionization to be determined, as well as total cross sections for electron loss reactions.Comment: To be published in Chemical Physics Letter

    Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula

    Full text link
    We investigate the asymptotic behavior of the Selberg-like integral 1N![0,1]Nx1pi<j(xixj)2ixia1(1xi)b1dxi \frac1{N!}\int_{[0,1]^N}x_1^p\prod_{i<j}(x_i-x_j)^2\prod_ix_i^{a-1}(1-x_i)^{b-1}dx_i, as NN\to\infty for different scalings of the parameters aa and bb with NN. Integrals of this type arise in the random matrix theory of electronic scattering in chaotic cavities supporting NN channels in the two attached leads. Making use of Newton's interpolation formula, we show that an asymptotic limit exists and we compute it explicitly

    Bond breaking in vibrationally excited methane on transition metal catalysts

    Get PDF
    The role of vibrational excitation of a single mode in the scattering of methane is studied by wave packet simulations of oriented CH4 and CD4 molecules from a flat surface. All nine internal vibrations are included. In the translational energy range from 32 up to 128 kJ/mol we find that initial vibrational excitations enhance the transfer of translational energy towards vibrational energy and increase the accessibility of the entrance channel for dissociation. Our simulations predict that initial vibrational excitations of the asymmetrical stretch (nu_3) and especially the symmetrical stretch (nu_1) modes will give the highest enhancement of the dissociation probability of methane.Comment: 4 pages REVTeX, 2 figures (eps), to be published in Phys. Rev. B. (See also arXiv:physics.chem-ph/0003031). Journal version at http://publish.aps.org/abstract/PRB/v61/p1565

    Attosecond emission from chromium plasma

    Get PDF
    International audienceWe present the first measurement of the attosecond emission generated from underdense plasma produced on a solid target. We generate high-order harmonics of a femtosecond Ti:sapphire laser focused in a weakly ionized underdense chromium plasma. Using the " Reconstruction of Attosecond Beating by Interference of Two-photon Transitions " (RABITT) technique, we show that the 11 th to the 19 th harmonic orders form in the time domain an attosecond pulse train with each pulse having 300 as duration, which is only 1.05 times the theoretical Fourier transform limit. Measurements reveal a very low positive group delay dispersion of 4200 as 2. Beside its fundamental interest, high-order harmonic generation in plasma plumes could thus provide an intense source of attosecond pulses for applications
    corecore