750 research outputs found

    Edge dislocations in crystal structures considered as traveling waves of discrete models

    Get PDF
    The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. An analytical description of dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is also given. A set of NN parallel edge dislocations whose centers are far from each other can depin a given one provided N=O(L)N=O(L), where LL is the average inter-dislocation distance divided by the Burgers vector of a single dislocation. Then a limiting dislocation density can be defined and calculated in simple cases.Comment: 10 pages, 3 eps figures, Revtex 4. Final version, corrected minor error

    Discrete models of dislocations and their motion in cubic crystals

    Get PDF
    A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc, fcc and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving edge and screw dislocations and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.

    Igniting homogeneous nucleation

    Get PDF
    Transient homogeneous nucleation is studied in the limit of large critical sizes. Starting from pure monomers, three eras of transient nucleation are characterized in the classic Becker-D\"oring kinetic equations with two different models of discrete diffusivity: the classic Turnbull-Fisher formula and an expression describing thermally driven growth of the nucleus. The latter diffusivity yields time lags for nucleation which are much closer to values measured in experiments with disilicate glasses. After an initial stage in which the number of monomers decreases, many clusters of small size are produced and a continuous size distribution is created. During the second era, nucleii are increasing steadily in size in such a way that their distribution appears as a wave front advancing towards the critical size for steady nucleation. The nucleation rate at critical size is negligible during this era. After the wave front reaches critical size, it ignites the creation of supercritical clusters at a rate that increases monotonically until its steady value is reached. Analytical formulas for the transient nucleation rate and the time lag are obtained that improve classical ones and compare very well with direct numerical solutions.Comment: 32 pages, 6 figures, to appear in Phys. Rev.

    Dust temperature and CO-to-H2 conversion factor variations in the SFR-M* plane

    Full text link
    Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in the SFR-M* plane. The far-infrared data are used to derive dust masses, Mdust. Combined with an empirical prescription for the dependence of the gas-to-dust ratio on metallicity (GDR), the CO luminosities and Mdust values are used to derive for each galaxy the CO-to-H2 conversion factor, alpha_co. Like in the local Universe, the value of alpha_co is a factor of ~5 smaller in starbursts compared to normal star-forming galaxies (SFGs). We also uncover a relation between alpha_co and dust temperature (Tdust; alpha_co decreasing with increasing Tdust) as obtained from modified blackbody fits to the far-infrared data. While the absolute normalization of the alpha_co(Tdust) relation is uncertain, the global trend is robust against possible systematic biases in the determination of Mdust, GDR or metallicity. Although we cannot formally distinguish between a step and a smooth evolution of alpha_co with the dust temperature, we can conclude that in galaxies of near-solar metallicity, a critical value of Tdust=30K can be used to determine whether the appropriate alpha_co is closer to the starburst value (1.0 Msun(K kms pc^2)^-1, if Tdust>30K) or closer to the Galactic value (4.35 Msun (K kms pc^2)^-1, if Tdust<30K). This indicator has the great advantage of being less subjective than visual morphological classifications of mergers/SFGs, which can be difficult at high z because of the clumpy nature of SFGs. In the absence of far-infrared data, the offset of a galaxy from the main sequence (i.e., log[SSFR(galaxy)/SSFR_MS(M*,z)]) can be used to identify galaxies requiring the use of an alpha_co conversion factor lower than the Galactic value.Comment: Accepted for publication in Astronomy and Astrophysics (A&A); 15 pages, 6 figures; V2: updated reference lis

    High-J CO SLEDs in nearby infrared bright galaxies observed by Herschel-PACS

    Get PDF
    We report the detection of far-infrared (FIR) CO rotational emission from nearby active galactic nuclei (AGN) and starburst galaxies, as well as several merging systems and Ultra-Luminous Infrared Galaxies (ULIRGs). Using Herschel-PACS, we have detected transitions in the Jupp_{upp} = 14 - 20 range (λ∼\lambda \sim 130 - 185 μ\mum, ν∼\nu \sim 1612 - 2300 GHz) with upper limits on (and in two cases, detections of) CO line fluxes up to Jupp_{upp} = 30. The PACS CO data obtained here provide the first well-sampled FIR extragalactic CO SLEDs for this range, and will be an essential reference for future high redshift studies. We find a large range in the overall SLED shape, even amongst galaxies of similar type, demonstrating the uncertainties in relying solely on high-J CO diagnostics to characterize the excitation source of a galaxy. Combining our data with low-J line intensities taken from the literature, we present a CO ratio-ratio diagram and discuss its potential diagnostic value in distinguishing excitation sources and physical properties of the molecular gas. The position of a galaxy on such a diagram is less a signature of its excitation mechanism, than an indicator of the presence (or absence) of warm, dense molecular gas. We then quantitatively analyze the CO emission from a subset of the detected sources with Large Velocity Gradient (LVG) radiative transfer models to fit the CO SLEDs. Using both single-component and two-component LVG models to fit the kinetic temperature, velocity gradient, number density and column density of the gas, we derive the molecular gas mass and the corresponding CO-to-H2_2 conversion factor, αCO\alpha_{CO}, for each respective source. For the ULIRGs we find α\alpha values in the canonical range 0.4 - 5 M⊙_\odot/(K kms−1^{-1}pc2^2), while for the other objects, α\alpha varies between 0.2 and 14.} Finally, we compare our best-fit LVG model ..Comment: 39 pages, 3 figures; Accepted to Ap

    Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220

    Full text link
    We report on Herschel/PACS observations of absorption lines of OH+, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with E_lower of at least 285 and \sim200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH+/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1)x10^{16} cm-2 and \sim2x10^{-8}, respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH+/H2O+\sim5-10. H3O+ is detected in both sources with N(H3O+)\sim(0.5-2)x10^{16} cm-2, and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of ~500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ - O+ - OH+ - H2O+ - H3O+, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (\gtrsim10^4 cm-3) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is zeta>10^{-13} s-1, a lower limit that is severalx10^2 times the highest rate estimates for Galactic regions. In Arp 220, our lower limit for zeta is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an AGN is responsible for the molecular ion production.Comment: 24 pages, 13 figures. Accepted for publication in Astronomy & Astrophysic

    Decay of weak solutions to the 2D dissipative quasi-geostrophic equation

    Full text link
    We address the decay of the norm of weak solutions to the 2D dissipative quasi-geostrophic equation. When the initial data is in L2L^2 only, we prove that the L2L^2 norm tends to zero but with no uniform rate, that is, there are solutions with arbitrarily slow decay. For the initial data in Lp∩L2L^p \cap L^2, with 1≤p<21 \leq p < 2, we are able to obtain a uniform decay rate in L2L^2. We also prove that when the L22α−1L^{\frac{2}{2 \alpha -1}} norm of the initial data is small enough, the LqL^q norms, for q>22α−1q > \frac{2}{2 \alpha -1} have uniform decay rates. This result allows us to prove decay for the LqL^q norms, for q≥22α−1q \geq \frac{2}{2 \alpha -1}, when the initial data is in L2∩L22α−1L^2 \cap L^{\frac{2}{2 \alpha -1}}.Comment: A paragraph describing work by Carrillo and Ferreira proving results directly related to the ones in this paper is added in the Introduction. Rest of the article remains unchange

    Towards a resolved Kennicutt-Schmidt law at high redshift

    Get PDF
    Massive galaxies in the distant Universe form stars at much higher rates than today. Although direct resolution of the star forming regions of these galaxies is still a challenge, recent molecular gas observations at the IRAM Plateau de Bure interferometer enable us to study the star formation efficiency on subgalactic scales around redshift z = 1.2. We present a method for obtaining the gas and star formation rate (SFR) surface densities of ensembles of clumps composing galaxies at this redshift, even though the corresponding scales are not resolved. This method is based on identifying these structures in position-velocity diagrams corresponding to slices within the galaxies. We use unique IRAM observations of the CO(3-2) rotational line and DEEP2 spectra of four massive star forming distant galaxies - EGS13003805, EGS13004291, EGS12007881, and EGS13019128 in the AEGIS terminology - to determine the gas and SFR surface densities of the identifiable ensembles of clumps that constitute them. The integrated CO line luminosity is assumed to be directly proportional to the total gas mass, and the SFR is deduced from the [OII] line. We identify the ensembles of clumps with the angular resolution available in both CO and [OII] spectroscopy; i.e., 1-1.5". SFR and gas surface densities are averaged in areas of this size, which is also the thickness of the DEEP2 slits and of the extracted IRAM slices, and we derive a spatially resolved Kennicutt-Schmidt (KS) relation on a scale of ~8 kpc. The data generally indicates an average depletion time of 1.9 Gyr, but with significant variations from point to point within the galaxies.Comment: 6 pages, 4 figures, 2 tables, accepted by Astronomy and Astrophysic

    CASOS QUIRURGICOS DE HIDATIDOSIS DE HIGADO Y PULMON EN EL HOSPITAL HIPOLITO UNANUE DE TACNA ENERO 95 - AGOSTO 2001

    Get PDF
    El presente estudio descriptivo-retrospectivo y analítico se realizó en el Hospital H. Unánue de Tacna de enero 1995 a agosto del 2001, con el propósito de conocer los resultados de las medidas de diagnóstico y de tratamiento quirúrgico de Hidatidosis hepático - pulmonar en 12 pacientes de ambos sexos y edades entre 6 a 80 años, del servicio de Cirugía. &nbsp; Los resultados indican que la hidatidosis predomina en segunda a cuarta década de la vida (75%) y los pacientes proceden de zonas ganaderas alto andinas de Tacna, Puno y otros departamentos. El diagnóstico es satisfactorio con las medidas usadas, complementando al estudio clínico y epidemiológico. &nbsp; La intervención quirúrgica inmediata al diagnóstico resulta ser necesaria por los daños quísticos de larga evolución. La técnica quirúrgica mayor utilizada es la quistectomía y sus variantes, complementadas por drenaje tubular y de penrose. Se encontraron complicaciones en el 33%, por infección, evisceración, obstrucción intestinal, drenaje de secreción persistente e infectado y coma hiperosmolar. &nbsp; El tratamiento se basa en un esquema de antibióticos y quimioterápicos asociados entre una cefalosporina de tercera generación más aminoglucócidos o metronidazol. No es recomendable el uso de solución hipertónica en lavado de cavidad peritoneal por producir hipernatremia y coma hiperosmolar fatal

    PHIBSS: molecular gas content and scaling relations in z~1-3 normal star forming galaxies

    Full text link
    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in normal star forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z~1.2 and 2.2, with log(M*(M_solar))>10.4 and log(SFR(M_solar/yr))>1.5. Including a correction for the incomplete coverage of the M*-SFR plane, we infer average gas fractions of ~0.33 at z~1.2 and ~0.47 at z~2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z~1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular gas - star formation relation for the z=1-3 SFGs is near-linear, with a ~0.7 Gyrs gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z~0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M*, gas fractions correlate strongly with the specific star formation rate. The variation of specific star formation rate between z~0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.Comment: Submitted to the Astrophysical Journal; 14 figure
    • …
    corecore