114 research outputs found

    RADx-UP Testing Core: Access to COVID-19 Diagnostics in Community-Engaged Research with Underserved Populations

    Get PDF
    Research on the COVID-19 pandemic revealed a disproportionate burden of COVID-19 infection and death among underserved populations and exposed low rates of SARS-CoV-2 testing in these communities. A landmark National Institutes of Health (NIH) funding initiative, the Rapid Acceleration of Diagnostics-Underserved Populations (RADx-UP) program, was developed to address the research gap in understanding the adoption of COVID-19 testing in underserved populations. This program is the single largest investment in health disparities and community-engaged research in the history of the NIH. The RADx-UP Testing Core (TC) provides community-based investigators with essential scientific expertise and guidance on COVID-19 diagnostics. This commentary describes the first 2 years of the TC's experience, highlighting the challenges faced and insights gained to safely and effectively deploy large-scale diagnostics for community-initiated research in underserved populations during a pandemic. The success of RADx-UP shows that community-based research to increase access and uptake of testing among underserved populations can be accomplished during a pandemic with tools, resources, and multidisciplinary expertise provided by a centralized testing-specific coordinating center. We developed adaptive tools to support individual testing strategies and frameworks for these diverse studies and ensured continuous monitoring of testing strategies and use of study data. In a rapidly evolving setting of tremendous uncertainty, the TC provided essential and real-time technical expertise to support safe, effective, and adaptive testing. The lessons learned go beyond this pandemic and can serve as a framework for rapid deployment of testing in response to future crises, especially when populations are affected inequitably

    ANS: Aberrant Neurodevelopment of the Social Cognition Network in Adolescents with Autism Spectrum Disorders

    Get PDF
    Background: Autism spectrum disorders (ASD) are characterized by aberrant neurodevelopment. Although the ASD brain undergoes precocious growth followed by decelerated maturation during early postnatal period of childhood, the neuroimaging approach has not been empirically applied to investigate how the ASD brain develops during adolescence. Methodology/Principal Findings: We enrolled 25 male adolescents with high functioning ASD and 25 typically developing controls for voxel-based morphometric analysis of structural magnetic resonance image. Results indicate that there is an imbalance of regional gray matter volumes and concentrations along with no global brain enlargement in adolescents with high functioning ASD relative to controls. Notably, the right inferior parietal lobule, a role in social cognition, have a significant interaction of age by groups as indicated by absence of an age-related gain of regional gray matter volume and concentration for neurodevelopmental maturation during adolescence. Conclusions/Significance: The findings indicate the neural correlates of social cognition exhibits aberrant neurodevelopment during adolescence in ASD, which may cast some light on the brain growth dysregulation hypothesis. The period of abnormal brain growth during adolescence may be characteristic of ASD. Age effects must be taken into account while measures of structural neuroimaging have been clinically put forward as potential phenotypes for ASD

    Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study

    Get PDF
    Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD.DTI scans were acquired for 19 children and adolescents with ASD (∼8-18 years; mean 12.4Β±3.1) and 16 age and IQ matched controls (∼8-18 years; mean 12.3Β±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≀12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing.Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder

    Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

    Get PDF
    Objectives: Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method: We used an established mouse model of maternal immune activation (MIA) by the viral mimic Polyl:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results: Polyl:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions: Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life. Β© 2009 Li et al.published_or_final_versio

    Economic Implication of too big to fail Hearing Before the Subcommitte on Economic Stabilization

    Get PDF
    Included in this document is John LaWare\u27s Testimony to the FCIC Committee on Bankin
    • …
    corecore