13,404 research outputs found

    Near-Infrared Photometric Variability of Stars Toward the Orion A Molecular Cloud

    Get PDF
    We present an analysis of J, H, and K time series photometry obtained with the southern 2MASS telescope over a 0.84 x 6 deg^2 region centered near the Orion Nebula Cluster. These data are used to establish the near-infrared variability properties of pre-main-sequence stars in Orion on time scales of 1-36 days, 2 months, and 2 years. A total of 1235 variable stars are identified, ~93% of which are associated with the Orion A molecular cloud. The variable stars exhibit a diversity of photometric behavior with time, including cyclic fluctuations, aperiodic day-to-day fluctuations, eclipses, slow drifts in brightness over one month, colorless variability, stars that become redder as they fade, and stars that become bluer as they fade. We examine rotational modulation of cool and hot star spots, variable obscuration from an inner circumstellar disk, and changes in the mass accretion rate and other properties in a circumstellar disk as possible origins of the variability. Cool spots can explain the variability characteristics in 56-77% of the stars, while the properties of the photometric fluctuations are more consistent with hot spots or extinction changes in at least 23% of the stars, and with variations in the disk mass accretion rate or inner disk radius in 1% of our sample. However, differences between the details of the observations and the details of variability predicted these models suggest either that another variability mechanism not considered here may be operative, or that the observed variability represents the net results of several of these phenomena. Analysis of the star count data indicates that the ONC is part of a larger area of enhanced stellar surface density which extends over a 0.4 x 2.4 deg^2 (3.4 x 20 pc^2) region containing 2700 stars brighter than K=14. (abridged version)Comment: 75 pages with 27 figures; to appear in AJ; see also http://www.astro.caltech.edu/~jmc/variables/orio

    Periodic Photometric Variability in the Becklin-Neugebauer Object

    Get PDF
    The Becklin-Neugebauer (BN) object in the Orion Nebula Cluster (ONC) is a well-studied optically invisible, infrared-bright young stellar object, thought to be an intermediate-mass protostar. We report here that BN exhibited nearly-sinusoidal periodic variability at the near-infrared H- and Ks-bands during a one month observing campaign in 2000 March/April. The period was 8.28 days and the peak-to-peak amplitude ~0.2 mag. Plausible mechanisms for producing the observed variability characteristics are explored.Comment: Accepted by ApJ Letter

    Resilience: Accounting for the Noncomputable

    Get PDF
    Plans to solve complex environmental problems should always consider the role of surprise. Nevertheless, there is a tendency to emphasize known computable aspects of a problem while neglecting aspects that are unknown and failing to ask questions about them. The tendency to ignore the noncomputable can be countered by considering a wide range of perspectives, encouraging transparency with regard to conflicting viewpoints, stimulating a diversity of models, and managing for the emergence of new syntheses that reorganize fragmentary knowledg

    Near-Infrared Photometric Variability of Stars Toward the Chamaeleon I Molecular Cloud

    Get PDF
    We present the results of a J, H, and K_s photometric monitoring campaign of a 0.72 x 6 sq deg. area centered on the Chamaeleon I star forming region. Data were obtained on 15 separate nights over a 4 month time interval using the 2MASS South telescope. Out of a total of 34,539 sources brighter than the photometric completeness limits (J=16.0, H=15.2, K_s=14.8), 95 exhibit near-infrared variability in one or more bands. The variables can be grouped into a population of bright, red objects that are associated with the Chamaeleon I association, and a population of faint, blue variables that are dispersed over the full 6 deg of the survey and are likely field stars or older pre-main-sequence stars unrelated to the present-day Chamaeleon I molecular cloud. Ten new candidate members of Chamaeleon I, including 8 brown dwarf candidates, have been identified based on variability and/or near-infrared excess emission in the J-H vs. H-K_s color-color-diagram. We also provide a compendium of astrometry and J, H, and K_s photometry for previously identified members and candidate members of Chamaeleon I.Comment: To appear in AJ; see http://www.astro.caltech.edu/~jmc/variables/cham1

    A Triassic Odonate From Argentina

    Get PDF

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Constraints on the Stellar/Sub-stellar Mass Function in the Inner Orion Nebula Cluster

    Get PDF
    We present the results of a 0.5-0.9" FWHM imaging survey at K (2.2 micron) and H (1.6 micron) covering 5.1' x 5.1' centered on Theta 1C Ori, the most massive star in the Orion Nebula Cluster (ONC). At the age and distance of this cluster, and in the absence of extinction, the hydrogen burning limit (0.08 Mo) occurs at K~13.5 mag while an object of mass 0.02 Mo has K~16.2 mag. Our photometry is complete for source detection at the 7 sigma level to K~17.5 mag and thus is sensitive to objects as low-mass as 0.02 Mo seen through visual extinction values as high as 10 magnitudes. We use the observed magnitudes, colors, and star counts to constrain the shape of the inner ONC stellar mass function across the hydrogen burning limit. After determining the stellar age and near-infrared excess properties of the optically visible stars in this same inner ONC region, we present a new technique that incorporates these distributions when extracting the mass function from the observed density of stars in the K-(H-K) diagram. We find that our data are inconsistent with a mass function that rises across the stellar/sub-stellar boundary. Instead, we find that the most likely form of the inner ONC mass function is one that rises to a peak around 0.15 Mo, and then declines across the hydrogen-burning limit with slope N(log M) ~ M^(0.57+/-0.05). We emphasize that our conclusions apply to the inner 0.71 pc x 0.71 pc of the ONC only; they may not apply to the ONC as a whole where some evidence for general mass segregation has been found.Comment: Accepted for publication in the Astrophysical Journal. Preprints/tables also available at http://phobos.caltech.edu/~jmc/papers/onc

    Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis

    Full text link
    Many molecular glass forming liquids show a shift of the glass transition Tg to lower temperatures when the liquid is confined into mesoporous host matrices. Two contrary explanations for this effect are given in literature: First, confinement induced acceleration of the dynamics of the molecules leads to an effective downshift of Tg increasing with decreasing pore size. Secondly, due to thermal mismatch between the liquid and the surrounding host matrix, negative pressure develops inside the pores with decreasing temperature, which also shifts Tg to lower temperatures. Here we present novel dynamic mechanical analysis measurements of the glass forming liquid salol in Vycor and Gelsil with pore sizes of d = 2.6, 5.0 and 7.5 nm. The dynamic complex elastic susceptibility data can be consistently described with the assumption of two relaxation processes inside the pores: A surface induced slowed down relaxation due to interaction with rough pore interfaces and a second relaxation within the core of the pores. This core relaxation time is reduced with decreasing pore size d, leading to a downshift of Tg in perfect agreement with recent DSC measurements

    The circumbinary disk of HD 98800B: Evidence for disk warping

    Get PDF
    The quadruple young stellar system HD 98800 consists of two spectroscopic binary pairs with a circumbinary disk around the B component. Recent work by Boden and collaborators using infrared interferometry and radial velocity data resulted in a determination of the physical orbit for HD 98800B. We use the resulting inclination of the binary and the measured extinction toward the B component stars to constrain the distribution of circumbinary material. Although a standard optically and geometrically thick disk model can reproduce the spectral energy distribution, it cannot account for the observed extinction if the binary and the disk are coplanar. We next constructed a dynamical model to investigate the influence of the A component, which is not in the Ba‐Bb orbital plane, on the B disk. We find that these interactions have a substantial impact on the inclination of the B circumbinary disk with respect to the Ba‐Bb orbital plane. The resulting warp would be sufficient to place material into the line of sight and the noncoplanar disk orientation may also cause the upper layers of the disk to intersect the line of sight if the disk is geometrically thick. These simulations also support that the dynamics of the Ba‐Bb orbit clear the inner region to a radius of~3 AU. We then discuss whether the somewhat unusual properties of the HD 98800B disk are consistent with material remnant from the star formation process or with more recent creation by collisions from larger bodies

    Massive Protoplanetary Disks in the Trapezium Region

    Full text link
    (abridged) We determine the disk mass distribution around 336 stars in the young Orion Nebula cluster by imaging a 2.5' x 2.5' region in 3 mm continuum emission with the Owens Valley Millimeter Array. For this sample of 336 stars, we observe 3 mm emission above the 3-sigma noise level toward ten sources, six of which have also been detected optically in silhouette against the bright nebular background. In addition, we detect 20 objects that do not correspond to known near-IR cluster members. Comparisons of our measured fluxes with longer wavelength observations enable rough separation of dust emission from thermal free-free emission, and we find substantial dust emission toward most objects. For the ten objects detected at both 3 mm and near-IR wavelengths, eight exhibit substantial dust emission. Excluding the high-mass stars and assuming a gas-to-dust ratio of 100, we estimate circumstellar masses ranging from 0.13 to 0.39 Msun. For the cluster members not detected at 3 mm, images of individual objects are stacked to constrain the mean 3 mm flux of the ensemble. The average flux is detected at the 3-sigma confidence level, and implies an average disk mass of 0.005 Msun, comparable to the minimum mass solar nebula. The percentage of stars in Orion surrounded by disks more massive than ~0.1 Msun is consistent with the disk mass distribution in Taurus, and we argue that massive disks in Orion do not appear to be truncated through close encounters with high-mass stars. Comparison of the average disk mass and number of massive dusty structures in Orion with similar surveys of the NGC 2024 and IC 348 clusters constrains the evolutionary timescales of massive circumstellar disks in clustered environments.Comment: 27 pages, including 7 figures. Accepted by Ap
    • 

    corecore