387 research outputs found

    A microflow cytometer for microsphere-based immunoassays using integrated optics and inertial particle focussing

    No full text
    We present work towards a microflow cytometer for performing multiplex immunoassays using commercially available fluorescently-labelled microspheres. The device consists of a silica chip with integrated GeO2:SiO2 channel waveguides which deliver excitation light orthogonally to an etched flow channel [1], [2]. The rectangular cross section, 2:1 aspect ratio flow channel and flow rate create an inertial focussing effect on the microspheres [3] which ensures they flow through the plane of maximum optical excitation, halfway up the height of the channel, with minimal positional variation. The optical waveguide core is fabricated by magnetron sputtering of GeO2:SiO2 films which are then etched to form channel waveguides by ICP etching. The silica cladding, up to 13.5 µm thick, is deposited by either flame hydrolysis deposition or a combination of magnetron sputtering followed by PECVD. Fluidic channels are etched with ICP etching. Channels with the dimensions of 14.1 µm x 27.5 µm and near vertical sidewalls (91°±4°) have been produced in silica as shown in the cross section in Figure 1A. Figure 1B shows a device with the fluidic channel etched through waveguides clad with PECVD silica. Design parameters were established with PDMS test channels 25.5 µm deep by 12.2 µm wide. Figures 2A and 2B show transmission fluorescence imaging of streaks from multiple 5.6µm diameter microspheres flowing at 0.49 m/s down the fluidic channel. The microspheres are shown to be focused into a tight stream at 15 mm from the channel entrance in Figure 2C, indicating the minimum channel length required for the final devices. Future work will include dual channel quantification of microsphere fluorescence and development of an assay for TNFalpha and later multiplex measurements. Collection of fluorescence with channel waveguides and also characterisation of transmission measurements from flowing microspheres will also be studied

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure

    Phylogeny of Geomydoecus and Thomomydoecus pocket gopher lice (phthiraptera, trichodectidae) inferred from cladistic analysis of adult and first instar morphology

    Get PDF
    The phylogeny for all 122 species and subspecies of chewing lice of the genera Geomydoecus and Thomomydoecus (Phthiraptera: Trichodectidae) hosted by pocket gophers (Rodentia: Geomyidae) is estimated by a cladistic analysis of fifty-eight morphological characters obtained from adults and first instars. The data set has considerable homoplasy, but still contains phylogenetic information. The phylogeny obtained is moderately resolved and, with some notable exceptions, supports the species complexes proposed by Hellenthal and Price over the the last two decades. The subgenera G. (Thaelerius) and T. (Thomomydoecus) are both shown to be monophyletic, but the monophly of subgenus T. (Jamespattonius) could not be confirmed, perhaps due to the lack of first-instar data for one of its component species. The nominate subgenus of Geomydoecus may be monophyletic, but our cladogram was insufficiently resolved to corroborate this. Mapping the pocket gopher hosts onto the phylogeny reveals a consistent pattern of louse clades being restricted to particular genera or subgenera of gophers, but the history of the host-parasite association appears complex and will require considerable effort to resolve

    Parallel ecological networks in ecosystems

    Get PDF
    In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Implementation of a pharmacogenomics consult service to support the INGENIOUS trial

    Get PDF
    Hospital systems increasingly utilize pharmacogenomic testing to inform clinical prescribing. Successful implementation efforts have been modeled at many academic centers. In contrast, this report provides insights into the formation of a pharmacogenomics consultation service at a safety-net hospital, which predominantly serves low-income, uninsured, and vulnerable populations. The report describes the INdiana GENomics Implementation: an Opportunity for the UnderServed (INGENIOUS) trial and addresses concerns of adjudication, credentialing, and funding

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Multinucleon transfer in the interaction of 977 MeV and 1143 MeV Hg 204 with Pb 208

    Get PDF
    A previous study of symmetric collisions of massive nuclei has shown that current models of multinucleon transfer (MNT) reactions do not adequately describe the transfer product yields. To gain further insight into this problem, we have measured the yields of MNT products in the interaction of 977 (E/A=4.79 MeV) and 1143 MeV (E/A=5.60 MeV) Hg204 with Pb208. We find that the yield of multinucleon transfer products are similar in these two reactions and are substantially lower than those observed in the reaction of 1257 MeV (E/A=6.16 MeV) Hg204+Pt198. We compare our measurements with the predictions of the GRAZING-F, dinuclear systems (DNS), and improved quantum molecular dynamics (ImQMD) models. For the observed isotopes of the elements Au, Hg, Tl, Pb, and Bi, the measured values of the MNT cross sections are orders of magnitude larger than the predicted values. Furthermore, the various models predict the formation of nuclides near the N=126 shell, which are not observed

    Xe 136 + Pb 208 reaction: A test of models of multinucleon transfer reactions

    Get PDF
    The yields of over 200 projectile-like fragments (PLFs) and target-like fragments (TLFs) from the interaction of (Ec.m.=450 MeV) Xe136 with a thick target of Pb208 were measured using Gammasphere and off-line γ-ray spectroscopy, giving a comprehensive picture of the production cross sections in this reaction. The measured yields were compared to predictions of the grazing model and the predictions of Zagrebaev and Greiner using a quantitative metric, the theory evaluation factor tef. The grazing model predictions are adequate for describing the yields of nuclei near the target or projectile but they grossly underestimate the yields of all other products. The predictions of Zagrebaev and Greiner correctly describe the magnitude and maxima of the observed TLF transfer cross sections for a wide range of transfers (ΔZ=-8 to ΔZ=+2). However, for ΔZ=+4, the observed position of the maximum in the distribution is four neutrons richer than the predicted maximum. The predicted yields of the neutron-rich N=126 nuclei exceed the measured values by two orders of magnitude. Correlations between TLF and PLF yields are discussed

    Balancing end-to-end budgets of the Georges Bank ecosystem

    Get PDF
    Author Posting. © Elsevier, 2007. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 74 (2007): 423-448, doi:10.1016/j.pocean.2007.05.003.Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (well mixed, transitional and stratified) and for three seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.The research was done under the aegis of the U.S.-GLOBEC Northwest Atlantic Georges Bank Study, a program sponsored jointly by the U.S. National Science Foundation and the U.S. National Oceanic and Atmospheric Administration. We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele), NSF awards OCE0217399 (D.J. Gifford), OCE0217122 (J.J. Bisagni) and OCE0217257 (M.E. Sieracki). W.T. Stockhausen was supported by the NOAA Sponsored Coastal Ocean Research Program
    corecore