112 research outputs found

    Pathogenicity of Fusarium species causing head blight in barley

    Get PDF
    The pathogenicity of eight Fusarium species causing fusarium head blight (FHB) in barley was studied under controlled conditions. Six barley genotypes varying in resistance to FHB were artificially inoculated with six isolates each of F. acuminatum, F. avenaceum, F. crookwellense, F. culmorum, F. equiseti, F. graminearum, F. poae and F. sporotrichioides 10-14 d after heading. Symptoms of FHB were rated as disease severity using a 0-9 scale, 4, 7, 14, 21 and 28 d after inoculation, and as percentage of infected spikelets (IS) after 21 d. All species tested caused head blight symptoms on the barley genotypes, but only F. crookwellense, F. culmorum and F. graminearum resulted in severe disease development (> 65% IS) and were considered highly pathogenic. Fusarium avenaceum had 48% IS, which was significantly lower than those of the three highly pathogenic species and was moderately pathogenic. The remaining species had 65 %) et ont été considérés comme fortement pathogènes. Avec un PÉI de 48 %, qui était significativement inférieur à ceux des trois espèces les plus pathogènes, le Fusarium avenaceum a été considéré comme moyennement pathogène. Les autres espèces ont eu un PÉI de moins de 15 % et ont été considérées comme faiblement pathogènes. Des différences significatives (P < 0,05) ont été observées entre les espèces pour l'agressivité parmi les isolats et pour la sensibilité parmi les génotypes d'orge, ce qui suggère que le tri pour la résistance à la FÉ doit faire appel à des isolats agressifs ou à un mélange de plusieurs isolats. C'est la première fois que le F. crookwellense est signalé comme fortement pathogène et le F. avenaceum comme moyennement pathogène sur l'orge

    Reduction in Asthma Morbidity in Children as a Result of Home Remediation Aimed at Moisture Sources

    Get PDF
    OBJECTIVE: Home dampness and the presence of mold and allergens have been associated with asthma morbidity. We examined changes in asthma morbidity in children as a result of home remediation aimed at moisture sources. DESIGN: In this prospective, randomized controlled trial, symptomatic, asthmatic children (n = 62), 2–17 years of age, living in a home with indoor mold, received an asthma intervention including an action plan, education, and individualized problem solving. The remediation group also received household repairs, including reduction of water infiltration, removal of water-damaged building materials, and heating/ventilation/air-conditioning alterations. The control group received only home cleaning information. We measured children’s total and allergen-specific serum immuno-globulin E, peripheral blood eosinophil counts, and urinary cotinine. Environmental dust samples were analyzed for dust mite, cockroach, rodent urinary protein, endotoxin, and fungi. The follow-up period was 1 year. RESULTS: Children in both groups showed improvement in asthma symptomatic days during the preremediation portion of the study. The remediation group had a significant decrease in symptom days (p = 0.003, as randomized; p = 0.004, intent to treat) after remodeling, whereas these parameters in the control group did not significantly change. In the postremediation period, the remediation group had a lower rate of exacerbations compared with control asthmatics (as treated: 1 of 29 vs. 11 of 33, respectively, p = 0. 003; intent to treat: 28.1% and 10.0%, respectively, p = 0.11). CONCLUSION: Construction remediation aimed at the root cause of moisture sources and combined with a medical/behavioral intervention significantly reduces symptom days and health care use for asthmatic children who live in homes with a documented mold problem

    Satin associated lower cancer risk and related mortaity in patients with heart failure

    Get PDF
    Aims Patients with heart failure (HF) have an increased risk of incident cancer. Data relating to the association of statin use with cancer risk and cancer-related mortality among patients with HF are sparse. Methods and results Using a previously validated territory-wide clinical information registry, statin use was ascertained among all eligible patients with HF (n = 87 102) from 2003 to 2015. Inverse probability of treatment weighting was used to balance baseline covariates between statin nonusers (n = 50 926) with statin users (n = 36 176). Competing risk regression with Cox proportional-hazard models was performed to estimate the risk of cancer and cancer-related mortality associated with statin use. Of all eligible subjects, the mean age was 76.5 +/- 12.8 years, and 47.8% was male. Over a median follow-up of 4.1 years (interquartile range: 1.6-6.8), 11 052 (12.7%) were diagnosed with cancer. Statin use (vs. none) was associated with a 16% lower risk of cancer incidence [multivariable adjusted subdistribution hazard ratio (SHR) = 0.84; 95% confidence interval (CI), 0.80-0.89]. This inverse association with risk of cancer was duration dependent; as compared with short-term statin use (3 months to = 6 years of use. Ten-year cancer-related mortality was 3.8% among statin users and 5.2% among nonusers (absolute risk difference, -1.4 percentage points [95% CI, -1.6% to -1.2%]; adjusted SHR= 0.74; 95% CI, 0.67-0.81). Conclusion Our study suggests that statin use is associated with a significantly lower risk of incident cancer and cancer-related mortality in HF, an association that appears to be duration dependent. [GRAPHICS]

    Mouse Genetic Background Influences the Dental Phenotype

    Get PDF
    Dental enamel covers the crown of the vertebrate tooth and is considered to be the hardest tissue in the body. Enamel develops during secretion of an extracellular matrix by ameloblast cells in the tooth germ, prior to eruption of the tooth into the oral cavity. Secreted enamel proteins direct mineralization patterns during the maturation stage of amelogenesis as the tooth prepares to erupt. The amelogenins are the most abundant enamel proteins, and are required for normal enamel development. Phenotypic differences were observed between incisors from individual Amelx (Amelogenin) null mice that had a mixed 129xC57BL/6J genetic background, and between inbred wld-type (WT) mice with different genetic backgrounds (C57BL/6J, C3H/HEJ, FVB/NJ). We hypothesized this could be due to modifier genes, as human patients with a mutation in an enamel protein gene causing the enamel defect amelogenesis imperfecta (AI) also can have varied appearance of dentitions within a kindred. Enamel density measurements varied for all WT inbred strains midway during incisor development. Enamel thickness varied between some WT strains and, unexpectedly, dentin density varied extensively between incisors and molars of all WT and Amelx null strains studied. WT FVB/NJ incisors were more similar to Amelx null than to the other WT strains in incisor height/weight ratio and pattern of enamel mineralization. Strain-specific differences led to the conclusion that modifier genes may be implicated in determining both normal development and severity of enamel appearance in AI mouse models and may in future studies be related to phenotypic heterogeneity within human AI kindreds reported in the literature

    Ameloblasts require active RhoA to generate normal dental enamel

    Get PDF
    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment and cell proliferation. During amelogenesis, ameloblasts which produce the enamel proteins undergo dramatic cytoskeletal changes and RhoA protein level is upregulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene regulatory sequences. Transgenic and WT molar tooth germs were incubated with NaF or NaCl in organ culture. F-actin stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared to WT ameloblasts treated with NaCl or compared to transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/ROCK pathway in the transgenic mice. Little difference in quantitative fluorescence (estimation of fluorosis) was observed between WT and transgenic incisors from mice provided NaF in their drinking water. We subsequently found reduced transgene expression in incisors compared to molars. Transgenic molar teeth had reduced amelogenin, E-cadherin and Ki67 compared to WT. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited

    Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation

    Get PDF
    Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress

    Hypermethylation of the DLC1 CpG island does not alter gene expression in canine lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study is a comparative epigenetic evaluation of the methylation status of the <it>DLC1 </it>tumor suppressor gene in naturally-occurring canine lymphoma. Canine non-Hodgkin's lymphoma (NHL) has been proposed to be a relevant preclinical model that occurs spontaneously and may share causative factors with human NHL due to a shared home environment. The canine <it>DLC1 </it>mRNA sequence was derived from normal tissue. Using lymphoid samples from 21 dogs with NHL and 7 normal dogs, the methylation status of the promoter CpG island of the gene was defined for each sample using combined bisulfite restriction analysis (COBRA), methylation-specific PCR (MSP), and bisulfite sequencing methods. Relative gene expression was determined using real-time PCR.</p> <p>Results</p> <p>The mRNA sequence of canine <it>DLC1 </it>is highly similar to the human orthologue and contains all protein functional groups, with 97% or greater similarity in functional regions. Hypermethylation of the 5' and 3' flanking regions of the promoter was statistically significantly associated with the NHL phenotype, but was not associated with silencing of expression or differences in survival.</p> <p>Conclusion</p> <p>The canine <it>DLC1 </it>is constructed highly similarly to the human gene, which has been shown to be an important tumor suppressor in many forms of cancer. As in human NHL, the promoter CpG island of <it>DLC1 </it>in canine NHL samples is abnormally hypermethylated, relative to normal lymphoid tissue. This study confirms that hypermethylation occurs in canine cancers, further supporting the use of companion dogs as comparative models of disease for evaluation of carcinogenesis, biomarker diagnosis, and therapy.</p

    Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness

    Get PDF
    Low mean fundamental frequency (F0) in men’s voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F0 (an acoustic correlate of vocal fold size), F0 variation, intensity (loudness), utterance duration, and formant dispersion (Df, an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F0 variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F0, low Df, high intensity, and attractive word content across cycle phase and mating context. Low Df was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men’s voices because of the different types of information these vocal parameters provide
    corecore