
Mouse Genetic Background Influences the Dental Phenotype

Yong Li1, William S. Konicki1, J. Timothy Wright2, Cynthia Suggs2, Hui Xue1,3, Melissa A.
Kuehl1, Ashok B. Kulkarni4, and Carolyn W. Gibson1,*

1Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania,
Philadelphia, PA 19104 USA

2Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill,
NC 27599 USA

3Department of Orthodontics, School of Stomatology, Fourth Military Medical University,145 West
Changle Road, Xi’an, Shaanxi 710032 P.R.China

4Functional Genomics Section, Laboratory of Cell and Developmental Biology and Gene Transfer
Core, National Institute of Dental and Craniofacial Research, National Institutes of Health,
Bethesda, MD 20892 USA

Abstract

Dental enamel covers the crown of the vertebrate tooth and is considered to be the hardest tissue in

the body. Enamel develops during secretion of an extracellular matrix by ameloblast cells in the

tooth germ, prior to eruption of the tooth into the oral cavity. Secreted enamel proteins direct

mineralization patterns during the maturation stage of amelogenesis as the tooth prepares to erupt.

The amelogenins are the most abundant enamel proteins, and are required for normal enamel

development. Phenotypic differences were observed between incisors from individual Amelx

(Amelogenin) null mice that had a mixed 129xC57BL/6J genetic background, and between inbred

wld-type (WT) mice with different genetic backgrounds (C57BL/6J, C3H/HEJ, FVB/NJ). We

hypothesized this could be due to modifier genes, as human patients with a mutation in an enamel

protein gene causing the enamel defect amelogenesis imperfecta (AI) also can have varied

appearance of dentitions within a kindred. Enamel density measurements varied for all WT inbred

strains midway during incisor development. Enamel thickness varied between some WT strains

and, unexpectedly, dentin density varied extensively between incisors and molars of all WT and

Amelx null strains studied. WT FVB/NJ incisors were more similar to Amelx null than to the other

WT strains in incisor height/weight ratio and pattern of enamel mineralization. Strain-specific

differences led to the conclusion that modifier genes may be implicated in determining both

normal development and severity of enamel appearance in AI mouse models and may in future

studies be related to phenotypic heterogeneity within human AI kindreds reported in the literature.
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Introduction

Dental enamel is the highly mineralized tissue that is produced by epithelially-derived

ameloblast cells, and covers the crowns of vertebrate teeth. Early in development, prior to

eruption of the tooth into the oral cavity, a single layer of ameloblasts secretes an organic

matrix during the secretory stage of amelogenesis (Slavkin et al.,1982; Bei, 2009). The

organic matrix is assembled just after secretion, and is processed by proteases secreted by

ameloblasts as the enamel rod structures grow and mature (Bartlett, 2013). Through this

process, the ameloblasts determine the intricate organization of developing enamel into rod

or prism shaped structures, which have a decussating or crosshatched organization

especially visible in rodent teeth (Boyde, 1969). Most of the cleaved peptides are removed

as mineral crystals grow, and finally as the tooth erupts into the oral cavity, only a minor

amount of enamel protein remains, which is thought to contribute to toughness of the mature

enamel layer (He and Swain, 2008). Mature enamel covering the crown of the erupted tooth

is the hardest tissue in the human body.

While the organic matrix normally guides organization of the enamel mineralized structures,

the process can be interrupted or altered by the presence of abnormal enamel proteins

translated from genes with mutations that affect the coding regions (Witkop and Sauk,

1976). Inherited enamel defects termed amelogenesis imperfecta (AI) have been reported

due to mutations in the AMELX (Amelogenin), ENAM (Enamelin), MMP20 (Matrix

Metalloproteinase-20), and KLK4 (Kallikrein 4) genes (Lagerstrom et al., 1991; Rajpar et

al., 2001; Hart et al., 2004; Kim et al., 2005; Ozdemir et al., 2005), which encode secreted

structural proteins or proteases, and these mutations lead to a deficit in enamel thickness

(hypoplasia) or to enamel structural and compositional anomalies (hypocalcification or

hypomaturation). Additional gene mutations in FAMC83H and WDR72, which encode

ameloblast intracellular proteins, are associated with AI (Lee et al., 2008; El-Sayed et al.,

2009). Recently C4orf26, which encodes a putative extracellular acidic phosphoprotein, and

LAMB3 which encodes a protein previously linked to the syndrome junctional

epidermolysis bullosa, have been shown when mutated to be causative for AI (Parry et al.,

2012; Kim et al., 2013). In addition, enamel defects can be part of syndromes including

junctional epidermolysis bullosa and TDO (tricho-dento-osseous) syndrome (Wright et al.,

1993, 1997). Patients with AI can have unsatisfactory esthetics, dental sensitivity and caries

due to the enamel structural defects (Markovic et al., 2010).

Numerous reports have described phenotypic differences in patients’ enamel resulting from

mutations in different enamel related genes (Darling, 1956), and several investigators have

reported mutations localized in different regions of the amelogenin gene, encoding the most

abundant enamel protein, which alter the respective phenotypes of the defective enamel

(Aldred et al., 1992; Lench and Winter, 1995; Wright et al., 2003). However, differences

have also been described between multigenerational family members that presumably have

the identical mutation (Witkop and Rao, 1971; Backman and Holmgren, 1988; Lench et al.,

1994; Lench and Winter. 1995; Nusier et al., 2004; Wright et al., 2009a), but could be

related to behavior, nutrition or environment. Differences attributed to X-inactivation can

explain only mutations in genes located on the X chromosome, such as AMELX (Witkop and

Sauk, 1976; Lench et al.,1994). Varying phenotypes noted between teeth in individuals with
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autosomal mutations within a single dentition, between primary and secondary teeth within

an affected individual, or within individual teeth, as well as the variable presence of AI-

associated open bite, are more difficult to explain, and have been reported within families

with ENAM, FAM83H or other autosomal gene mutations (Witkop and Sauk, 1976; Nusier

et al., 2004; Wright et al., 2009a). Mice with a heterozygous mutation in the Enamelin gene

also have varying enamel phenotypes, with nearly normal incisors while molars were

discolored and subject to rapid wear (Hu et al., 2008).

To explain this variable phenotype in other tissues, “modifier genes” had been proposed

(Haldane, 1941; Witkop and Sauk, 1971; Genin et al., 2008), and in many cases identified

(Nadeau, 2001; Buchner et al., 2003; Hamilton and Yu, 2012). Modifier genes may act by

altering onset, range of symptoms or clinical severity and have a role in incomplete

penetrance (Nadeau, 2003; Tang et al., 2005). In general, genetic modifiers can function by

up- or down-regulating expression of genes in a particular pathway, alteration of mRNA

stability, DNA methylation or chromatin structure (Linder, 2006).

To better understand whether expression of modifier genes may lead to phenotypic

variability in murine teeth, the inbred mouse was chosen for a model as non-dental wild-type

(WT) phenotypic and genetic differences between inbred commercially available strains

have been documented through genomic DNA sequence determination and the PHENOME

project (Wade and Daly, 2005). A major contribution to understanding phenotypic

differences between murine teeth was a 2002 report that described levels of susceptibility to

dietary fluoride leading to enamel fluorosis, which varied significantly between mouse

strains (Everett et al., 2002). Murine bone has also been shown to be differentially

susceptible to fluorosis according to strain (Mousney et al., 2006; Everett, 2011). In

untreated WT mice, strain-specific differences between femur size, density and mechanical

measures have been reported (Beamer et al., 2002; Wergedal et al., 2005).

Mouse strains have been developed to model the human AI phenotypes by generating null

mutations in various enamel protein genes and the resulting null mice have dental

phenotypes similar to human patients with AI (Wright et al, 2009b). However, we had

observed phenotypic differences between individual Amelx null mice that were on a mixed

129/SvJxC57BL/6 genetic background, as some mice had nearly normal enamel but others

had severe enamel defects, and we suspected modifier genes may be responsible.

Interestingly, Mmp20 null mice developed distinctly different enamel appearance when the

mutation was transferred to congenic background strains. The C57BL/6 congenic Mmp20

null mice have a more severe phenotype compared to REJ129. The prism pattern is less

disrupted in the 129 mice and 129 enamel has approximately full thickness, rather than

being hypoplastic as in the C57BL/6 background (J. Bartlett, personal communication).

We chose to examine three inbred strains for comparison of wild-type and AI-affected teeth

to begin to search for phenotypic differences that could lead to uncovering genes whose

expression influences the enamel phenotype. C57BL/6J mice are the most widely used mice

for laboratory studies; they are sensitive to fluoride in drinking water and have relatively

low bone mineral density (Sacca et al., 2013), C3H/HeJ mice are considered general purpose

lab mice; they are also sensitive to fluoride but have high bone mineral density (Sultzer,
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1968) and FVB/NJ mice, which have large pronuclei and large litter sizes so they are

frequently used in generation of transgenic mice; they are resistant to fluoride and have

relatively greater body weight than the other two strains (Taketo et al., 1991; Everett et al.,

2002, 2011; Wergedal et al., 2005). Each of these inbred strains has been well characterized

during development and in some cases gene mutations or insertions with corresponding

pathologies have been identified within the “WT” strains. We in addition transferred the

Amelx null mutation into these strains in order to examine consequences to the phenotypes

as well as phenotypic differences between inbred and mixed strains.

MATERIALS AND METHODS

Murine models

Wild-type (WT) inbred strains were purchased from Jackson Labs (Bar Harbor, ME) and all

procedures were done in accordance with regulations of the University of Pennsylvania

Institutional Animal Care and Use Committee. Amelx null mice on a 129SvJxC57BL/6J

genetic background (Gibson et al., 2001) were repeatedly crossed with WTC57BL/6J mice

with selection by PCR using tail DNA as described (Li et al., 2008) of mice with the null

mutation until greater than generation nine was attained (>99% congenic). Amelx null

C57BL/6J mice were then mated with WTC3H/HeJ or WTFVB/NJ mice to generate F1

hybrids, that were mated to generate mixed background null mice according to the strategy

described by Nadeau (2001) in order to examine the phenotypic effect of altered

backgrounds . This strategy resulted in 1 or 2 Amelx null pups per litter (25-50% according

to the gender of the null mouse in the first generation, as Amelx is on the X chromosome).

PCR was used to establish WT, heterozygous (+/-) or null phenotypes and weights were

determined daily or at the time of euthanasia. Amelx heterozygous female mice were not

included in measurements but were initially included as a model of elevated phenotypic

heterogeneity in incisor enamel.

Phenotypic Analysis

Weight: Mice (n=27-30) were weighed for 21 consecutive days and means determined.

Photographic images were recorded using a Power Shot SX10 IS digital camera (Canon,

Inc., Toyko, Japan). Mandibular incisor heights were measured from the incisal edge to

gingival margin on the right mandibular incisor using the line tool of ImageJ (Rasband,

2012). Width measurements were taken between the mandibular midline and right incisor's

distal edge at the intersection of the middle and gingival thirds. Height/width ratios were

calculated to standardize photographic images.

MicroCT analysis for enamel and dentin density

Mandibles were fixed overnight in 4% paraformaldehyde and prepared for analysis as

described (Gibson et al., 2011) except that scans were performed on a microtomograph

imaging system (μCT 40, Scanco Medical AG, Brüttisellen, Switzerland) with 16 μm

resolution at 70 kVp (Pugach et al., 2013). The images were processed by three-dimensional

reconstruction software (μCT Evaluation Program v6.0, Scanco Medical) and analyzed for
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enamel and dentin density and volume. Hydroxyapatite standards were used for instrument

calibration, as described (Pugach et al., 2010).

Incisor measurements were analyzed at two locations. The bone barrel is the incisor location

as it exits the mandibular bone for eruption, and the molar barrel is the incisor location

subjacent to the first mandibular molar as described (Gibson et al., 2011). The first

mandibular molar was analyzed at the position over the mesial root apex.

SEM and enamel thickness

Mandibles were fractured using a razor blade, and SEM analysis of fractured internal

enamel and dentin surfaces of incisors and molars was completed at 15 kV (FEI Quanta 200

FEG, FEI, Hillboro, OR, USA or using the JEOL JSM T330A scanning electron microscope

as described (Pugach et al., 2010; Gibson et al., 2011).

Statistics

Statistical significance for multiple samples was determined by ANOVA with Bonferroni's

Multiple Comparison Test, with significance determined as P<0.05 (GraphPad Prism 5;

Graph Pad Software, San Diego, CA, USA). For analysis of inbred and mixed background

mouse weights, one-sided Student's t test was used for each time point with significance at

P<0.05.

RESULTS

The common observation that various murine inbred strains have different patterns of

weight gain during early development was first confirmed for our mice. The mean weights

during the first 3 postnatal weeks of the inbred WTC57BL/6J strain and a WT mixed

background (129xC57BL/6J) strain are shown in Fig. 1, where a consistent difference was

observed at each time point. 129xC57BL/6J is the original genetic background for

Amelogenin null (Amelx KO) mice (Gibson et al., 2001).

INCISOR PHENOTYPE

The appearance of the incisors from Amelx null mice shown in Fig. 2A-D illustrates the

heterogeneity in appearance that was observed in our colony. These null mice on a

129xC57BL/6J genetic background do not express any of the amelogenin alternatively

spliced transcripts that encode amelogenin proteins (Gibson et al., 2001) yet have distinct

variations in appearance, which include color and level of chalkiness, tooth shape and

amount of attrition. Male and female Amelx null mice had similar levels of phenotypic

heterogeneity in incisors. Because some null mice had incisors nearly similar to WT in

appearance, we hypothesized that the variation in the mixed genetic background could be

linked to this observation, and we therefore transferred the Amelx null mutation to a

C57BL/6J background by repeated mating with WTC57BL/6J mice and confirmed the

genotype by PCR at each cross until the F9 generation was achieved.

The appearance of WT incisor teeth from different inbred strains was then documented as

phenotypic differences between strains had anecdotally been reported. We found that
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C57BL/6J (Fig. 3A) and C3H/HeJ (Fig. 3B) strains were similar in appearance but the

FVB/NJ (Fig. 3C) mice had more pigmented incisor teeth with somewhat different shape.

Measurements shown in Fig. 3D are the height/width ratios of mandibular incisors of the

three WT strains shown in A,B,C plus the ratios of Amelx null C57BL/6J and null C3H/

HeJxC57BL/6J strains for comparison. WTC57BL/6J and WTC3H/HeJ are not statistically

different (P>0.05), while WTFVB/NJ and KOC57BL/6J are also similar to each other but

different from the other WT strains.

The Amelx null gene on the C57BL/6J background was subsequently transferred to C3H/

HeJxC57BL/6J and FVB/NJxC57BL/6J backgrounds according to the strategy described by

Nadeau (2001) so that effects of the various strains could be determined by more sensitive

means such as microCT and scanning electron microscopy.

INCISOR ENAMEL DENSITY

To better understand the differences between strains, microCT measurements were

generated to evaluate density of enamel and dentin at two locations. Fig. 4A shows microCT

analysis of WT enamel density at the bone barrel region of incisors for each strain. The bone

barrel is located where the incisor exits the mandibular bone at eruption. At this region the

measurement for the 129xC57BL/6J mixed background mice varied significantly from the

C3H/HeJ and the FVB/NJ strains, but was similar to C57BL/6J. Fig. 4B shows density

measurements for the incisor molar barrel region, which is a less mature region of incisor

enamel inferior to the first molar. The density readings here vary widely with large standard

deviations (SD) and significant difference was observed between FVB/NJ and either

C57BL/6J or C3H/HeJ incisor enamel. Examination of the individual measurements led to

the realization that the number of zero measurements for enamel density varied between

these WT strains, and percent of samples with zero measurement is plotted in Fig. 4C. While

there were no zero measurements for C3H/HeJ incisors, the number of zero measures

increased to 20% for C57BL/6J to 50% for mixed 129xC57BL/6J background and to nearly

100% for FVB/NJ mice. The Amelx null mice were used as a control as they generally do

not have mineral at this location of the incisor during development. A comparison of Figs.

4A and 4B shows that delay in incisor enamel mineralization observed in WTFVB/NJ mice

seems to recover by the time the tooth erupts.

For each strain, the mean density of incisor enamel was greater at the mandibular bone

barrel location compared to the molar barrel site. This increased density at bone barrel

would be expected as during normal development, the enamel increases in mineral content

as the tooth moves toward eruption. Molar barrel enamel in the incisor was also invariably

less dense compared to molar tooth enamel (data not shown).

ENAMEL THICKNESS

Because the enamel layer in Amelx null mice is too thin to accurately measure by microCT,

SEM images were used to measure enamel thickness in the various WT and Amelx null

murine strains. Significant differences in enamel thickness were noted between

WTC57BL/6J and WTFVB/NJ or WT129xC57BL/6J for incisors and between C57BL/6J

and FVB/NJ for molars (Fig. 5 A,B). Although there was variability, significant differences
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were not observed between thickness of incisor and molar enamel in any of the strains of

Amelx null mice, perhaps because the mixed genetic background strains all contained

C56BL/6 (C,D). For each WT strain, incisor enamel had greater thickness than the thickest

region of molar enamel (P<0.05).

DENTIN DENSITY

Using microCT, dentin density was also evaluated in the individual strains for WT and

Amelx null mice. For WT strains, the dentin differed in density in the mixed 129xC57BL/6J

background mice from any of the 3 inbred strains at the bone barrel location (Fig. 6A), as

well as for molar dentin (Fig. 6C). At the molar barrel location of the incisor, dentin varied

from mixed 129xC57BL/6J background mice for both C57BL/6J and C3H/HeJ (Fig. 6B).

Significant differences between dentin density in the Amelx null mice were noted for B6

(Fig. 6D), while all strains varied in dentin density at molar barrel location in incisors and in

molars (Fig. 6E,F).

DISCUSSION

The AI inherited enamel defect has a heterogeneous phenotype in human patients, which is

due partly to mutations in different enamel protein genes, or mutations in different domains

of a single enamel protein gene. X-linked mutations may also lead to heterogeneity due to

potential lyonization of X-chromosomal genes during enamel development. Yet another

level of phenotypic difference has been mentioned repeatedly in the literature in both human

kindreds and in mice, which may be attributed to the effects of modifier genes active in

ameloblasts during enamel formation.

WT inbred strains are known to differ from each other in various parameters during

development and in the adult mice (Linder, 2006; Taft et al., 2006), and we therefore chose

three commonly studied but somewhat dissimilar inbred mouse strains to evaluate in order

to detect significant differences. In various studies, inbred mouse strains have been reported

to vary significantly from each other in weight, developmental timing, size, bone density,

etc, and in relation to the effects of genetic mutations. In this study, all mice were treated

identically, including availability and type of chow, vivarium humidity, temperature, light

and dark cycles and were similar ages when analyzed. Nevertheless, differences in

appearance of Amelx null incisors in mice with mixed genetic background were obvious,

leading us to predict a modifier gene or other source of genotypic difference. These

differences were not due to X-chromosomal lyonization, as heterozygous females were not

included for the comparison.

Transgenic or null mice generated with mixed genetic backgrounds may be expected to

demonstrate greater phenotypic heterogeneity than inbred strains, and the Jackson

Laboratory has recommended that these mutations be constructed on mice with well-defined

strain background such as C57BL/6J or FVB/NJ (The Jackson Laboratory; Linder, 2006).

We noted that the WTFVB/NJ strain has several features more consistent with an Amelx null

phenotype, including incisor height/width ratio (compare to KOC57BL/6 or KOC3H/HeJ/

C56BL/6) and incisor molar barrel density (all KO strains), while WTC3H/HeJ and

WTC57BL/6J appearance and microCT analyses are more similar to each other. Differences
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between incisor and molar dentin density for most of the WT and Amelx null strains was

somewhat surprising; variability between WT dental phenotypes can complicate analysis of

effects of null mutations or transgenic expression on these backgrounds.

Heterogeneity in human phenotypes due to mutations leading to the various forms of AI has

frequently been commented upon, related to differences within and between individual teeth

in a patient, between primary and secondary dentition and between affected members of a

single kindred. Lyonization, the inactivation of one of the X chromosomes in females, can

explain heterogeneity in females with X-linked disease (Nadeau, 2001) but mutations in

autosomal genes cannot be explained in this way. The variability of the phenotypes in Amelx

null mice on a mixed genetic background is associated with the genes of two parents which

segregate between offspring randomly, when only male mice are compared to avoid the

lyonization effect. Understanding the potential impact of genetic modifiers which vary by

murine strain can shed light on genetic networks which have potential for manipulation for

therapeutic intervention (Hamilton and Yu, 2012).

Phenotypic differences can result from regulation of timing or level of expression of proteins

important to ameloblast differentiation or enamel development, from availability of

precursors of the mineral phase, or from factors related to general growth characteristics.

Susceptibility to environmental fluoride varies tremendously in the human populations as

does mineral density of hard tissues. Discovery of genetic causes for phenotypic differences

between WT strains or strains with identical mutations but different genetic backgrounds

will eventually lead to a more complete picture of forces important for generation or

regeneration of tissues such as enamel that for humans must last from eruption of the

secondary teeth into the oral cavity until the end of life, and have the potential for leading to

therapeutic intervention in order to save a tooth. This work can lead toward a future goal of

identifying the modifier genes that contribute to these phenotypes through tweaking levels

of expression of target genes (Bandiera et al., 2010), e.g. by altering expression of

transcription factors, miRNA or alterations within physiologically important pathways that

direct development of the mineralized tissues in the tooth. A fuller understanding may lead

to new insights into mechanisms involved in tooth regeneration and to aid in maintaining the

dentition throughout adulthood.
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Abbreviations

WT wild-type

KO null mutation in mice

AMELX or Amelx human or murine Amelogenin gene on the X chromosome

MMP20 or Mmp20 human or murine Matrix Metalloproteinase-20 gene
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μCT micro computed tomography

PCR polymerase chain reaction

BB bone barrel μCT region of incisor at eruption site from mandibular

bone

MB molar barrel μCT region of incisor inferior to molar mesial root

apex

AI amelogenesis imperfecta
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Fig. 1.
Mean weights of male and female mice with C57BL/6J and mixed 129xC57BL/6J genetic

background during postnatal days 1-21 (n=mean of 27-30 for each day). For each day,

inbred and mixed background mice differed (P<0.05).
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Fig. 2.
Images of murine incisors from Amelx null mice. Null mice with mixed genetic background

and phenotypic variability in A (7 week male), B (8 week male), C (6 month male), D (6

month female).
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Fig. 3.
Images and dimensions of murine incisors from WT strains or Amelx null mice. A, WT

mouse incisors C57BL/6; B, C3H/HeJ; C, FVB/NJ; D, ratio of height to width of incisor

teeth for WT shown in A,B,C and KOC57BL/6 and KOC3H/HeJxC57BL/6 Amelx null mice

(n=5-12 for each group). KO, Amelx null mice.

Li et al. Page 14

Cells Tissues Organs. Author manuscript; available in PMC 2015 April 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
WT Incisor enamel density according to microCT analysis. A. Mandibular incisor bone

barrel density (BB) *statistical difference from C3H/HeJ and FVB/NJ; B. Mandibular

incisor molar barrel density (MB) *statistical difference from C3H/HeJ and C57BL/6; C.

Percent of zero microCT enamel readings for each WT strain and Amelx null. Significant

difference P<0.05. KO, Amelx null mice.
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Fig. 5.
Enamel thickness by SEM. A, WT incisors *statistically different; B, WT molars

*difference indicated by bar; C, Amelx null incisors; D, Amelx null molars C,D differences

not noted. KO, Amelx null mice.
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Fig. 6.
Dentin density measured by microCT. A, WT incisors at BB *statistically different from 3

inbred strains; B, WT incisors at MB *statistically different from C3H/HeJ and C57BL/6; C,

WT molar *statistically different from 3 pure strains; D, Amelx null BB * statistically

different from C3H/HeJ and C57BL/6x129; E. Amelx null MB; F, Amelx null molar E and F,

differences are indicated with overlying bars. KO, Amelx null mice.

Li et al. Page 17

Cells Tissues Organs. Author manuscript; available in PMC 2015 April 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


