63 research outputs found
Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard
Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ?400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ?60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ?4â20 ?mol m?2 d?1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source
If you canât beat them, join them: using invasive plants to understand rhizodeposits as drivers of plant-soil feedbacks
The soil microbiome can increase crop resilience to both abiotic and biotic stress, and there is growing interest in uncovering the mechanisms by which we can shape plant associated microbiomes to increase crop yields within stressful environments. Through rhizodeposits, plants influence the composition of microbial communities and abiotic conditions in the rhizosphere, potentially generating plant-soil feedbacks which can increase nutrient availability and competitive ability against neighboring plants. Invasive plants have repeatedly been shown to drive plant-soil feedbacks that increase their ability to adapt to a wide range of environmental conditions and suppress neighboring plants. Using invasive plants as model species, we discuss what is currently known about the mechanisms that generate the plant-soil feedbacks that increase plant productivity, competitive ability, and resilience. Specifically, invasive potential is enhanced through 1) positive direct feedback loops which occur within a species, and can occur through enhanced mutualistic associations; or 2) negative indirect feedback loops, when feedbacks affect heterospecific plants through either allelopathy, disruption of mutualistic associations, and increased pathogen abundance. Knowledge on invasive plant exudate-microbe interactions may increase cropping system resilience through breeding superior crop genotypes, or potentially through soil amendments that disrupt weed-microbe interactions. We argue that because the soil biotic and native plant community often evolve in response to negative indirect feedback loops, focusing breeding efforts on positive direct plant-soil feedbacks, such as those that increase mutualistic associations and nutrient availability in the rhizosphere, are likely to lead to long-term stress resilient crops. Future research should explore to what extent upregulating production of specific exudates in non-invasive crop species generate the same plant-soil feedbacks responsible for invasive plant success
Literacy and blood pressure â do healthcare systems influence this relationship? A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Limited literacy is common among patients with chronic conditions and is associated with poor health outcomes. We sought to determine the association between literacy and blood pressure in primary care patients with hypertension and to determine if this relationship was consistent across distinct systems of healthcare delivery.</p> <p>Methods</p> <p>We conducted a cross-sectional study of 1224 patients with hypertension utilizing baseline data from two separate, but similar randomized controlled trials. Patients were enrolled from primary care clinics in the Veterans Affairs healthcare system (VAHS) and a university healthcare system (UHS) in Durham, North Carolina. We compared the association between literacy and the primary outcome systolic blood pressure (SBP) and secondary outcomes of diastolic blood pressure (DBP) and blood pressure (BP) control across the two different healthcare systems.</p> <p>Results</p> <p>Patients who read below a 9<sup>th </sup>grade level comprised 38.4% of patients in the VAHS and 27.5% of the patients in the UHS. There was a significant interaction between literacy and healthcare system for SBP. In adjusted analyses, SBP for patients with limited literacy was 1.2 mmHg lower than patients with adequate literacy in the VAHS (95% CI, -4.8 to 2.3), but 6.1 mmHg higher than patients with adequate literacy in the UHS (95% CI, 2.1 to 10.1); (p = 0.003 for test of interaction). This literacy by healthcare system interaction was not statistically significant for DBP or BP control.</p> <p>Conclusion</p> <p>The relationship between patient literacy and systolic blood pressure varied significantly across different models of healthcare delivery. The attributes of the healthcare delivery system may influence the relationship between literacy and health outcomes.</p
mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
The target of rapamycin (TOR), as part of the rapamycinsensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl-terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination-mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis
A Review of Events That Expose Children to Elemental Mercury in the United States
Concern for children exposed to elemental mercury prompted the Agency for Toxic Substances and Disease Registry and the Centers for Disease Control and Prevention to review the sources of elemental mercury exposures in children, describe the location and proportion of children affected, and make recommendations on how to prevent these exposures. In this review, we excluded mercury exposures from coal-burning facilities, dental amalgams, fish consumption, medical waste incinerators, or thimerosal-containing vaccines. We reviewed federal, state, and regional programs with data on mercury releases along with published reports of children exposed to elemental mercury in the United States. We selected all mercury-related events that were documented to expose (or potentially expose) children. Primary exposure locations were at home, at school, and at others such as industrial property not adequately remediated or medical facilities. Exposure to small spills from broken thermometers was the most common scenario; however, reports of such exposures are declining. The information reviewed suggests that most releases do not lead to demonstrable harm if the exposure period is short and the mercury is properly cleaned up. Primary prevention should include health education and policy initiatives
Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations
A mismatch between hybrid butterflies and their ecological environment restricts gene flow between populations that feed on different host plants, highlighting the potential importance of a seldom-studied mechanism of reproductive isolation
At what cost?: Spanish neutrality in the First World War
While historians have gone to great efforts in studying the belligerent powers during the First World War, very little attention has been paid to such neutral powers as Spain. Several European nations declared neutrality in 1914, but many strayed from this course in favor of active belligerence. Spain, however, remained neutral for the war\u27s duration; thus, this thesis examines and explores the nature of Spanish neutrality during the First World War. Spain\u27s decision to adhere to a neutral policy required serious consideration as it had to weigh the consequences and advantages of intervention; however, military and economic weakness, as well as diplomatic isolation pushed Spain towards neutrality. Some hoped by abstaining from involvement, their country would emerge at the war\u27s end as the arbiter of peace, enabling Spain to regain prestige and reestablish itself as a major continental power.
However, neutrality proved to be a difficult undertaking because Spain could not escape the hardships and effects of a continental war. As domestic crises enveloped the country, a divided public aligned itself into Francophiles and Germanophiles. Escalating domestic issues became exacerbated by diplomatic conflicts resulting from the German submarine warfare campaign, which challenged Spain\u27s neutrality policy. Thus, Spain found itself in a precarious position during the war. While recognizing the necessity to maintain neutrality, it suffered serious consequences for its decision. It did not emerge from the war as an arbiter of peace, but suffered diplomatic humiliation over its failure to overcome the German submarine threat. The government\u27s focus on foreign policy led its leaders to ignore the growing domestic discontent, which further destabilized an already unsteady government.
As a result, governments rose and fell as all proved incapable of resolving Spain\u27s ever-increasing problems. The case of Spain in the First World War demonstrates that neutrality is not necessarily the safe course that many believe, as no country can fully escape the effects of war. As a neutral, Spain faced incredible difficulties. The government\u27s neutrality policy kept Spain out of the war, but the regime faced the significant consequences of this decision including its ultimate demise
Recommended from our members
An Optimized Rhizobox Protocol to Visualize Root Growth and Responsiveness to Localized Nutrients.
Roots are notoriously difficult to study. Soil is both a visual and mechanical barrier, making it difficult to track roots in situ without destructive harvest or expensive equipment. We present a customizable and affordable rhizobox method that allows the non-destructive visualization of root growth over time and is particularly well-suited to studying root plasticity in response to localized resource patches. The method was validated by assessing maize genotypic variation in plasticity responses to patches containing 15N-labeled legume residue. Methods are described to obtain representative developmental measurements over time, measure root length density in resource-containing and control patches, calculate root growth rates, and determine 15N recovery by plant roots and shoots. Advantages, caveats, and potential future applications of the method are also discussed. Although care must be taken to ensure that experimental conditions do not bias root growth data, the rhizobox protocol presented here yields reliable results if carried out with sufficient attention to detail
Recommended from our members
Has agricultural intensification impacted maize root traits and rhizosphere interactions related to organic N acquisition?
Plant-microbe interactions in the rhizosphere influence rates of organic matter mineralization and nutrient cycling that are critical to sustainable agricultural productivity. Agricultural intensification, particularly the introduction of synthetic fertilizer in the USA, altered the abundance and dominant forms of nitrogen (N), a critical plant nutrient, potentially imposing selection pressure on plant traits and plant-microbe interactions regulating N cycling and acquisition. We hypothesized that maize adaptation to synthetic N fertilization altered root functional traits and rhizosphere microbial nutrient cycling, reducing maize ability to acquire N from organic sources. Six maize genotypes released pre-fertilizer (1936, 1939, 1942) or post-fertilizer (1984, 1994, 2015) were grown in rhizoboxes containing patches of 15N-labelled clover/vetch residue. Multivariate approaches did not identify architectural traits that strongly and consistently predicted rhizosphere processes, though metrics of root morphological plasticity were linked to carbon- and N-cycling enzyme activities. Root traits, potential activities of extracellular enzymes (BG, LAP, NAG, urease), abundances of N-cycling genes (amoA, narG, nirK, nirS, nosZ) and uptake of organic N did not differ between eras of release despite substantial variation among genotypes and replicates. Thus, agricultural intensification does not appear to have impaired N cycling and acquisition from organic sources by modern maize and its rhizobiome. Improved mechanistic understanding of rhizosphere processes and their response to selective pressures will contribute greatly to rhizosphere engineering for sustainable agriculture
- âŠ