19 research outputs found

    Btk regulates macrophage polarization in response to lipopolysaccharide

    Get PDF
    Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (−\−)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(−/−) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-ÎșB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-ÎșB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(−/−) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(−/−) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (−/−) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    EnquĂȘter

    No full text
    International audienc

    Functional group richness increases multifunctionality in intensively managed grasslands

    No full text
    Abstract Background Agricultural yields have increased continuously over the last few decades. However, a focus solely on production can harm the environment. Diversification of agriculture has been suggested to increase production and sustainability. Biodiversity experiments showed positive effects on ecosystems and productivity. However, application of these results to intensively managed grasslands has been questioned due to differences in plant species and management regimes. Research on whether diversity can benefit multifunctionality, that is, an integrated index of multiple ecosystem functions, under intensive management, is still scarce. Methods To address this, we manipulated plant species richness from one to six species spanning three functional groups (legumes, herbs, and grasses) in intensively managed multispecies grassland leys and examined seven ecosystem functions. Results We found that multifunctionality increased with functional group and species richness. Legume+herb mixtures showed high multifunctionality, while grass monocultures and mixtures with high proportions of grasses had low multifunctionality. Different plant species and plant communities drove different ecosystem functions. Legumes and herbs improved productivity and water availability, while grasses enhanced invasion resistance. These results indicate that multifunctionality and individual ecosystem functions can be promoted through targeted combinations of plants with complementary ecological traits. Conclusions Plant diversity can improve multifunctionality also under intensive management, potentially benefitting agroeconomics and sustainability

    Where are the Guns?

    No full text

    Chemodiversity affects preference for chemotypes in two aphid species

    No full text
    Neuhaus‐Harr A, Ojeda‐Prieto L, Eilers E, MĂŒller C, Weisser WW, Heinen R. Chemodiversity affects preference for chemotypes in two aphid species. Oikos. 2024: e10437.Plants of the same species can strongly differ in their specialized metabolite profiles, which can affect insect presence and abundance in the field. However, how specialized chemistry shapes plant attractiveness to herbivorous insects is not fully understood. Here, we used common tansyTanacetum vulgare, Asteraceae) – a perennial plant that is highly diverse in terpenoid composition and is known to have variable chemotypes – to test whether 1) plants with different chemotype profiles differ in attractiveness to two specialist aphid species,Macrosiphoniella tanacetariaandUroleucon tanaceti, in pairwise choice assays; 2) the diversity of the terpenoid blend affects plant attractiveness to aphids; 3) how plant chemical traits relate to plant morphological traits and which traits best explain aphid preference. We found thatM. tanacetariapreferred two out of five chemotypes, dominated by α‐thujone/ÎČ‐thujone and ÎČ‐trans‐chrysanthenyl acetate, while avoiding a chemotype dominated by α‐pinene/sabinene.Uroleucon tanacetishowed no clear preference towards chemotypes, but when given a choice between chemotypes dominated by α‐thujone/ÎČ‐thujone and by α‐pinene/sabinene, they preferred the former. Importantly, plant attractiveness to aphids was marginally negatively correlated with chemodiversity, i.e. the number of terpenoid compounds, inM. tanacetaria, but not inU. tanaceti. Interestingly, the relative concentration and number of terpenoids were generally higher in larger and bushier plants. Hence, we did not observe a tradeoff between plant growth and defence. We conclude that plant chemical composition affects plant attractiveness to aphids and hence may contribute to variation in natural aphid colonization patterns on plants of the same species

    Hypervariability of Biofilm Formation and Oxacillin Resistance in a Staphylococcus epidermidis Strain Causing Persistent Severe Infection in an Immunocompromised Patient▿

    No full text
    We report on a leukemic patient who suffered from a persistent, generalized, and eventually fatal Staphylococcus epidermidis infection during prolonged aplasia. Over a 6-week period, we isolated a genetically and phenotypically unstable S. epidermidis strain related to an epidemic clone associated with hospital infections worldwide. Strikingly, the strain showed a remarkable degree of variability, with evidence of selection and increasing predominance of biofilm-producing and oxacillin-resistant variants over time. Thus, in the early stages of the infection, the strain was found to generate subpopulations which had spontaneously lost the biofilm-mediating ica locus along with the oxacillin resistance-conferring mecA gene. These deletion mutants were obviously outcompeted by the ica- and mecA-positive wild-type genotype, with the selection and predominance of strongly biofilm-forming and oxacillin-resistant variants in the later stages of the infection. Also, a switch from protein- to polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG)-mediated-biofilm production was detected among ica-positive variants in the course of the infection. The data highlight the impact of distinct S. epidermidis clonal lineages as serious nosocomial pathogens that, through the generation and selection of highly pathogenic variants, may critically determine disease progression and outcome

    Ecology and Evolution of Intraspecific Chemodiversity of Plants

    No full text
    An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions:1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations?2) What are the ecological consequences of intraspecific plant chemodiversity?3) How is plant chemodiversity genetically determined and maintained?By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution

    Ecology and Evolution of Intraspecific Chemodiversity of Plants

    Get PDF
    MĂŒller C, BrĂ€utigam A, Eilers E, et al. Ecology and Evolution of Intraspecific Chemodiversity of Plants. Research Ideas and Outcomes. 2020;6: e49810.An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions: <1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations? 2) What are the ecological consequences of intraspecific plant chemodiversity? 3) How is plant chemodiversity genetically determined and maintained? By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution
    corecore