9,106 research outputs found

    Fearless Friday Naima Scott & Caroline Lewis

    Full text link
    In this week’s edition of Fearless Friday, SURGE is honoring Naima Scott and Caroline Lewis for all the work they have done in our community as well as working on this year’s Vagina Monologues. [excerpt

    Cytokine tuning of intestinal epithelial function

    Get PDF
    The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed

    PlantID – DNA-based identification of multiple medicinal plants in complex mixtures

    Get PDF
    Background An efficient method for the identification of medicinal plant products is now a priority as the global demand increases. This study aims to develop a DNA-based method for the identification and authentication of plant species that can be implemented in the industry to aid compliance with regulations, based upon the economically important Hypericum perforatum L. (St John’s Wort or Guan ye Lian Qiao). Methods The ITS regions of several Hypericum species were analysed to identify the most divergent regions and PCR primers were designed to anneal specifically to these regions in the different Hypericum species. Candidate primers were selected such that the amplicon produced by each species-specific reaction differed in size. The use of fluorescently labelled primers enabled these products to be resolved by capillary electrophoresis. Results Four closely related Hypericum species were detected simultaneously and independently in one reaction. Each species could be identified individually and in any combination. The introduction of three more closely related species to the test had no effect on the results. Highly processed commercial plant material was identified, despite the potential complications of DNA degradation in such samples. Conclusion This technique can detect the presence of an expected plant material and adulterant materials in one reaction. The method could be simply applied to other medicinal plants and their problem adulterants

    Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota

    Get PDF
    Copyright: 2014 Crowther et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The human gastrointestinal tract harbours a complex microbial community which exist in planktonic and sessile form. The degree to which composition and function of faecal and mucosal microbiota differ remains unclear. We describe the development and characterisation of an in vitro human gut model, which can be used to facilitate the formation and longitudinal analysis of mature mixed species biofilms. This enables the investigation of the role of biofilms in Clostridium difficile infection (CDI). A well established and validated human gut model of simulated CDI was adapted to incorporate glass rods that create a solid-gaseous-liquid interface for biofilm formation. The continuous chemostat model was inoculated with a pooled human faecal emulsion and controlled to mimic colonic conditions in vivo. Planktonic and sessile bacterial populations were enumerated for up to 46 days. Biofilm consistently formed macroscopic structures on all glass rods over extended periods of time, providing a framework to sample and analyse biofilm structures independently. Whilst variation in biofilm biomass is evident between rods, populations of sessile bacterial groups (log10 cfu/g of biofilm) remain relatively consistent between rods at each sampling point. All bacterial groups enumerated within the planktonic communities were also present within biofilm structures. The planktonic mode of growth of C. difficile and gut microbiota closely reflected observations within the original gut model. However, distinct differences were observed in the behaviour of sessile and planktonic C. difficile populations, with C. difficile spores preferentially persisting within biofilm structures. The redesigned biofilm chemostat model has been validated for reproducible and consistent formation of mixed species intestinal biofilms. This model can be utilised for the analysis of sessile mixed species communities longitudinally, potentially providing information of the role of biofilms in CDI.Peer reviewe

    Cenozoic evolution of the eastern Black Sea: a test of depth-dependent stretching models

    Get PDF
    Subsidence analysis of the eastern Black Sea basin suggests that the stratigraphy of this deep, extensional basin can be explained by a predominantly pure-shear stretching history. A strain-rate inversion method that assumes pure-shear extension obtains good fits between observed and predicted stratigraphy. A relatively pure-shear strain distribution is also obtained when a strain-rate inversion algorithm is applied that allows extension to vary with depth without assuming its existence or form. The timing of opening of the eastern Black Sea, which occupied a back-arc position during the closure of the Tethys Ocean, has also been a subject of intense debate; competing theories called for basin opening during the Jurassic, Cretaceous or Paleocene/Eocene. Our work suggests that extension likely continued into the early Cenozoic, in agreement with stratigraphic relationships onshore and with estimates for the timing of arc magmatism. Further basin deepening also appears to have occurred in the last 20 myr. This anomalous subsidence event is focused in the northern part of the basin and reaches its peak at 15–10 Ma. We suggest that this comparatively localized shortening is associated with the northward movement of the Arabian plate. We also explore the effects of paleowater depth and elastic thickness on the results. These parameters are controversial, particularly for deep-water basins and margins, but their estimation is a necessary step in any analysis of the tectonic subsidence record stored in stratigraphy. <br/

    Maternal thyroid function and child educational attainment: prospective cohort study

    Get PDF
    Objective: To determine if first trimester maternal thyroid dysfunction is a critical determinant of child scholastic performance and overall educational attainment. Design: Prospective cohort study. Setting: Avon Longitudinal Study of Parents and Children cohort in the UK. Participants: 4615 mother-child pairs with an available first trimester sample (median 10 weeks gestation, interquartile range 8-12). Exposures: Free thyroxine, thyroid stimulating hormone, and thyroid peroxidase antibodies assessed as continuous measures and the seven clinical categories of maternal thyroid function. Main outcome measures: Five age-specific national curriculum assessments in 3580 children at entry stage assessment at 54 months, increasing up to 4461 children at their final school assessment at age 15. Results: No strong evidence of clinically meaningful associations of first trimester free thyroxine and thyroid stimulating hormone levels with entry stage assessment score or Standard Assessment Test scores at any of the key stages was found. Associations of maternal free thyroxine or thyroid stimulating hormone with the total number of General Certificates of Secondary Education (GCSEs) passed (range 0-16) were all close to the null: free thyroxine, rate ratio per pmol/L 1.00 (95% confidence interval 1.00 to 1.01); and thyroid stimulating hormone, rate ratio 0.98 (0.94 to 1.02). No important relationship was observed when more detailed capped scores of GCSEs allowing for both the number and grade of pass or when language, mathematics, and science performance were examined individually or when all educational assessments undertaken by an individual from school entry to leaving were considered. 200 (4.3%) mothers were newly identified as having hypothyroidism or subclinical hypothyroidism and 97 (2.1%) subclinical hyperthyroidism or hyperthyroidism. Children of mothers with thyroid dysfunction attained an equivalent number of GCSEs and equivalent grades as children of mothers with euthyroidism. Conclusions: Maternal thyroid dysfunction in early pregnancy does not have a clinically important association with impaired child performance at school or educational achievement

    Effect of Maternally Derived Anti-protein and Anticapsular IgG Antibodies on the Rate of Acquisition of Nasopharyngeal Carriage of Pneumococcus in Newborns.

    Get PDF
    Background: In developing countries, introduction of pneumococcal conjugate vaccine has not eliminated circulation of vaccine serotypes. Vaccinating pregnant mothers to increase antibody concentrations in their newborn infants may reduce the acquisition of pneumococcal carriage and subsequent risk of disease. We explored the efficacy of passive immunity, attributable to anti-protein and anticapsular pneumococcal antibodies, against acquisition of carriage. Methods: We examined the rate of nasopharyngeal acquisition of pneumococci in the first 90 days of life associated with varying anticapsular and anti-protein antibody concentrations in infant cord/maternal venous blood in Kilifi, Kenya. We used multivariable Cox proportional hazard models to estimate continuous functions relating acquisition of nasopharyngeal carriage to the concentration of maternally derived antibody. Results: Cord blood or maternal venous samples were collected from 976 mother-infant pairs. Pneumococci were acquired 561 times during 33,905 person-days of follow-up. Increasing concentrations of anti-protein antibodies were associated with either a reduction (PhtD1, PspAFam2, Spr0096, StkP) or, paradoxically, an increase (CbpA, LytC, PcpA, PiaA, PspAFam1, RrgBT4) in acquisition rate. We observed a nonsignificant reduction in the incidence of homologous carriage acquisition with high concentrations of maternally derived anticapsular antibodies to 5 serotypes (6A, 6B, 14, 19F, and 23F). Conclusion: The protective efficacy of several anti-protein antibodies supports the strategy of maternal vaccination to protect young infants from carriage and invasive disease. We were not able to demonstrate that passive anticapsular antibodies were protective against carriage acquisition at naturally occurring concentrations though it remains possible they may do so at the higher concentrations elicited by vaccination
    corecore