187 research outputs found

    Quantum Simulations in Effective Model Spaces (I): Hamiltonian Learning-VQE using Digital Quantum Computers and Application to the Lipkin-Meshkov-Glick Model

    Full text link
    The utility of effective model spaces in quantum simulations of non-relativistic quantum many-body systems is explored in the context of the Lipkin-Meshkov-Glick model of interacting fermions. We introduce an iterative hybrid-classical-quantum algorithm, Hamiltonian learning variational quantum eigensolver (HL-VQE), that simultaneously optimizes an effective Hamiltonian, thereby rearranging entanglement into the effective model space, and the associated ground-state wavefunction. HL-VQE is found to provide an exponential improvement in Lipkin-Meshkov-Glick model calculations, compared to a naive truncation without Hamiltonian learning, throughout a significant fraction of the Hilbert space. Quantum simulations are performed to demonstrate the HL-VQE algorithm, using an efficient mapping where the number of qubits scales with the log\log of the size of the effective model space, rather than the particle number, allowing for the description of large systems with small quantum circuits. Implementations on IBM's QExperience quantum computers and simulators for 1- and 2-qubit effective model spaces are shown to provide accurate and precise results, reproducing classical predictions. This work constitutes a step in the development of entanglement-driven quantum algorithms for the description of nuclear systems, that leverages the potential of noisy intermediate-scale quantum (NISQ) devices.Comment: 30 pages, 17 figures, v3: minor modification

    Empirical Study of Data Sharing by Authors Publishing in PLoS Journals

    Get PDF
    Many journals now require authors share their data with other investigators, either by depositing the data in a public repository or making it freely available upon request. These policies are explicit, but remain largely untested. We sought to determine how well authors comply with such policies by requesting data from authors who had published in one of two journals with clear data sharing policies.We requested data from ten investigators who had published in either PLoS Medicine or PLoS Clinical Trials. All responses were carefully documented. In the event that we were refused data, we reminded authors of the journal's data sharing guidelines. If we did not receive a response to our initial request, a second request was made. Following the ten requests for raw data, three investigators did not respond, four authors responded and refused to share their data, two email addresses were no longer valid, and one author requested further details. A reminder of PLoS's explicit requirement that authors share data did not change the reply from the four authors who initially refused. Only one author sent an original data set.We received only one of ten raw data sets requested. This suggests that journal policies requiring data sharing do not lead to authors making their data sets available to independent investigators

    Early-Adulthood Cardiovascular Disease Risk Factor Profiles Among Individuals With and Without Diabetes in the Framingham Heart Study

    Get PDF
    OBJECTIVE Many studies of diabetes have examined risk factors at the time of diabetes diagnosis instead of considering the lifetime burden of adverse risk factor levels. We examined the 30-year cardiovascular disease (CVD) risk factor burden that participants have up to the time of diabetes diagnosis. RESEARCH DESIGN AND METHODS Among participants free of CVD, incident diabetes cases (fasting plasma glucose ≥126 mg/dL or treatment) occurring at examinations 2 through 8 (1979–2008) of the Framingham Heart Study Offspring cohort were age- and sex-matched 1:2 to controls. CVD risk factors (hypertension, high LDL cholesterol, low HDL cholesterol, high triglycerides, obesity) were measured at the time of diabetes diagnosis and at time points 10, 20, and 30 years prior. Conditional logistic regression was used to compare risk factor levels at each time point between diabetes cases and controls. RESULTS We identified 525 participants with new-onset diabetes who were matched to 1,049 controls (mean age, 60 years; 40% women). Compared with those without diabetes, individuals who eventually developed diabetes had higher levels of hypertension (odds ratio [OR], 2.2; P = 0.003), high LDL (OR, 1.5; P = 0.04), low HDL (OR, 2.1; P = 0.0001), high triglycerides (OR, 1.7; P = 0.04), and obesity (OR, 3.3; P < 0.0001) at time points 30 years before diabetes diagnosis. After further adjustment for BMI, the ORs for hypertension (OR, 1.9; P = 0.02) and low HDL (OR, 1.7; P = 0.01) remained statistically significant. CONCLUSIONS CVD risk factors are increased up to 30 years before diagnosis of diabetes. These findings highlight the importance of a life course approach to CVD risk factor identification among individuals at risk for diabetes

    Creating a Professional Development Plan for a Simulation Consortium

    Get PDF
    As the United States struggles with health care reform and a nursing education system that inadequately prepares students for practice, dramatic advances in educational technology signal opportunities for both academic and practicing nurses to affect our profession as never before. Simulation technologies provide large and small institutions with the means to educate health care students and novice professionals effectively and efficiently through hands-on experience, but the costs of such a venture can be prohibitive. A simulation consortium offers a venue for different health care and educational institutions with shared goals to pool knowledge, monies, and labor toward health care education throughout a geographic area. This article details one Midwestern U.S. region's work in creating a professional development plan for a new simulation consortium

    CD248+ stromal cells are associated with progressive chronic kidney disease

    Get PDF
    Stromal fibroblasts are the primary cells of the kidney that produce fibrotic matrix. CD248 is a stromal marker expressed on fibroblasts and pericytes within the human kidney. Here, we tested whether CD248 expression in the kidney colocalizes with fibrosis and if it is associated with known determinants of chronic kidney disease (CKD). CD248 expression was located and quantified in situ by immunohistochemistry in kidney biopsies from 93 patients with IgA nephropathy and compared with 22 archived biopsies encompassing normal kidney tissue as control. In normal kidney tissue, CD248 was expressed by resident pericytes, stromal fibroblasts, and was upregulated in human CKD. The expression was linked to known determinants of renal progression. This relationship was maintained in a multivariate analysis with CD248 expression linked to renal survival. CD248 was expressed by a population of α-smooth muscle actin (SMA)+ myofibroblasts and α-SMA− stromal cells but not expressed on CD45+ leukocytes. Thus, CD248 defines a subset of stromal cells, including but not limited to some myofibroblasts, linked to albuminuria and tubulointerstitial damage during tissue remodeling in CKD

    Cognitive and kidney function: results from a British birth cohort reaching retirement age.

    Get PDF
    BACKGROUND: Previous studies have found associations between cognitive function and chronic kidney disease. We aimed to explore possible explanations for this association in the Medical Research Council National Survey of Health and Development, a prospective birth cohort representative of the general British population. METHODS: Cognitive function at age 60-64 years was quantified using five measures (verbal memory, letter search speed and accuracy, simple and choice reaction times) and glomerular filtration rate (eGFR) at the same age was estimated using cystatin C. The cross-sectional association between cognitive function and eGFR was adjusted for background confounding factors (socioeconomic position, educational attainment), prior cognition, and potential explanations for any remaining association (smoking, diabetes, hypertension, inflammation, obesity). RESULTS: Data on all the analysis variables were available for 1306-1320 study members (depending on cognitive measure). Verbal memory and simple and choice reaction times were strongly associated with eGFR. For example, the lowest quartile of verbal memory corresponded to a 4.1 (95% confidence interval 2.0, 6.2) ml/min/1.73 m(2) lower eGFR relative to the highest quartile. Some of this association was explained by confounding due to socioeconomic factors, but very little of it by prior cognition. Smoking, diabetes, hypertension, inflammation and obesity explained some but not all of the remaining association. CONCLUSIONS: These analyses support the notion of a shared pathophysiology of impaired cognitive and kidney function at older age, which precedes clinical disease. The implications of these findings for clinical care and research are important and under-recognised, though further confirmatory studies are required

    Expression and regulation of drug transporters in vertebrate neutrophils.

    Get PDF
    There remains a need to identify novel pro-resolution drugs for treatment of inflammatory disease. To date, there are no neutrophil-specific anti-inflammatory treatments in clinical use, perhaps due to our lack of understanding of how drugs access this complex cell type. Here we present the first comprehensive description and expression of both major classes of drug transporters, SLC and ABC, in resting human blood neutrophils. Moreover, we have studied the expression of these carriers in the tractable model system, the zebrafish (Danio rerio), additionally examining the evolutionary relationship between drug transporters in zebrafish and humans. We anticipate that this will be a valuable resource to the field of inflammation biology and will be an important asset in future anti-inflammatory drug design

    Validation study of a web-based assessment of functional recovery after radical prostatectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Good clinical care of prostate cancer patients after radical prostatectomy depends on careful assessment of post-operative morbidities, yet physicians do not always judge patient symptoms accurately. Logistical problems associated with using paper questionnaire limit their use in the clinic. We have implemented a web-interface ("STAR") for patient-reported outcomes after radical prostatectomy.</p> <p>Methods</p> <p>We analyzed data on the first 9 months of clinical implementation to evaluate the validity of the STAR questionnaire to assess functional outcomes following radical prostatectomy. We assessed response rate, internal consistency within domains, and the association between survey responses and known predictors of sexual and urinary function, including age, time from surgery, nerve sparing status and co-morbidities.</p> <p>Results</p> <p>Of 1581 men sent an invitation to complete the instrument online, 1235 responded for a response rate of 78%. Cronbach's alpha was 0.84, 0.86 and 0.97 for bowel, urinary and sexual function respectively. All known predictors of sexual and urinary function were significantly associated with survey responses in the hypothesized direction.</p> <p>Conclusions</p> <p>We have found that web-based assessment of functional recovery after radical prostatectomy is practical and feasible. The instrument demonstrated excellent psychometric properties, suggested that validity is maintained when questions are transferred from paper to electronic format and when patients give responses that they know will be seen by their doctor and added to their clinic record. As such, our system allows ready implementation of patient-reported outcomes into routine clinical practice.</p

    Identifying cell enriched miRNAs in kidney injury and repair

    Get PDF
    Small noncoding RNAs, miRNAs (miRNAs), are emerging as important modulators in the pathogenesis of kidney disease, with potential as biomarkers of kidney disease onset, progression, or therapeutic efficacy. Bulk tissue small RNA-sequencing (sRNA-Seq) and microarrays are widely used to identify dysregulated miRNA expression but are limited by the lack of precision regarding the cellular origin of the miRNA. In this study, we performed cell-specific sRNA-Seq on tubular cells, endothelial cells, PDGFR-β+ cells, and macrophages isolated from injured and repairing kidneys in the murine reversible unilateral ureteric obstruction model. We devised an unbiased bioinformatics pipeline to define the miRNA enrichment within these cell populations, constructing a miRNA catalog of injury and repair. Our analysis revealed that a significant proportion of cell-specific miRNAs in healthy animals were no longer specific following injury. We then applied this knowledge of the relative cell specificity of miRNAs to deconvolute bulk miRNA expression profiles in the renal cortex in murine models and human kidney disease. Finally, we used our data-driven approach to rationally select macrophage-enriched miR-16-5p and miR-18a-5p and demonstrate that they are promising urinary biomarkers of acute kidney injury in renal transplant recipients

    Optical Tastebuds for Water Quality Testing

    Get PDF
    To achieve the UN Sustainable Development Goal of universal access to clean water and sanitation, we need to rethink centralized water systems with global net-zero carbon and sustainability in mind. One approach is to develop scalable off-grid systems that are reliable and easy to use and maintain. A major challenge for such systems is translating the standard laboratory-based monitoring of centralized systems to a more sustainable and scalable model for regularly and routinely monitoring system outputs, which consist of complex mixtures with varying concentrations of molecules and ions in water. Here, we demonstrate a preliminary sensor that, once fully developed, could allow for point-of-use measurements with a single output to monitor. Rather than developing multiple sensors to monitor the levels of each individual component in the water, our label-free, array-based design mimics the biological system of taste. The sensor is comprised of an array of nano-tastebuds made of tailored plasmonic metasurfaces. The combination of different signals from each nano-tastebud to the same sample yields a unique fingerprint for that sample. Through training, these fingerprints build an identification model. By integrating a fully developed sensor into decentralized water systems, we seek to provide non-expert end-users with an easy-to-read output capable of warning of imminent system failures
    corecore