25 research outputs found
Molecular hydrogen emission in the interstellar medium of the Large Magellanic Cloud
We present the detection and analysis of molecular hydrogen emission toward
ten interstellar regions in the Large Magellanic Cloud. We examined
low-resolution infrared spectral maps of twelve regions obtained with the
Spitzer infrared spectrograph (IRS). The pure rotational 0--0 transitions of
H at 28.2 and 17.1 are detected in the IRS spectra for ten
regions. The higher level transitions are mostly upper limit measurements
except for three regions, where a 3 detection threshold is achieved for
lines at 12.2 and 8.6. The excitation diagrams of the detected
H transitions are used to determine the warm H gas column density and
temperature. The single-temperature fits through the lower transition lines
give temperatures in the range . The bulk of the excited H
gas is found at these temperatures and contributes 5-17% to the total gas
mass. We find a tight correlation of the H surface brightness with
polycyclic aromatic hydrocarbon and total infrared emission, which is a clear
indication of photo-electric heating in photodissociation regions. We find the
excitation of H by this process is equally efficient in both atomic and
molecular dominated regions. We also present the correlation of the warm H
physical conditions with dust properties. The warm H mass fraction and
excitation temperature show positive correlations with the average starlight
intensity, again supporting H excitation in photodissociation regions.Comment: Accepted for publication in MNRA
The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds
We study the emission by dust and stars in the Large and Small Magellanic
Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially
resolved spectral energy distributions (SEDs). This project combines Herschel
Space Observatory PACS and SPIRE far-infrared photometry with other data at
infrared and optical wavelengths. We build maps of dust and stellar luminosity
and mass of both Magellanic Clouds, and analyze the spatial distribution of
dust/stellar luminosity and mass ratios. These ratios vary considerably
throughout the galaxies, generally between the range and .
We observe that the dust/stellar ratios depend on the interstellar medium (ISM)
environment, such as the distance from currently or previously star-forming
regions, and on the intensity of the interstellar radiation field (ISRF). In
addition, we construct star formation rate (SFR) maps, and find that the SFR is
correlated with the dust/stellar luminosity and dust temperature in both
galaxies, demonstrating the relation between star formation, dust emission and
heating, though these correlations exhibit substantial scatter.Comment: 15 pages, 18 figures; ApJ, in press; version published in the journal
will have higher-resolution figure
Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-Dust Ratio Variations across ISM Phases
The spatial variations of the gas-to-dust ratio (GDR) provide constraints on
the chemical evolution and lifecycle of dust in galaxies. We examine the
relation between dust and gas at 10-50 pc resolution in the Large and Small
Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21
cm, CO, and Halpha observations. In the diffuse atomic ISM, we derive the
gas-to-dust ratio as the slope of the dust-gas relation and find gas-to-dust
ratios of 380+250-130 in the LMC, and 1200+1600-420 in the SMC, not including
helium. The atomic-to-molecular transition is located at dust surface densities
of 0.05 Mo pc-2 in the LMC and 0.03 Mo pc-2 in the SMC, corresponding to AV ~
0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion
factor to best account for all the molecular gas in the beam of the
observations, and find upper limits on XCO to be 6x1020 cm-2 K-1 km-1 s in the
LMC (Z=0.5Zo) at 15 pc resolution, and 4x 1021 cm-2 K-1 km-1 s in the SMC
(Z=0.2Zo) at 45 pc resolution. In the LMC, the slope of the dust-gas relation
in the dense ISM is lower than in the diffuse ISM by a factor ~2, even after
accounting for the effects of CO-dark H2 in the translucent envelopes of
molecular clouds. Coagulation of dust grains and the subsequent dust emissivity
increase in molecular clouds, and/or accretion of gas-phase metals onto dust
grains, and the subsequent dust abundance (dust-to-gas ratio) increase in
molecular clouds could explain the observations. In the SMC, variations in the
dust-gas slope caused by coagulation or accretion are degenerate with the
effects of CO-dark H2. Within the expected 5--20 times Galactic XCO range, the
dust-gas slope can be either constant or decrease by a factor of several across
ISM phases. Further modeling and observations are required to break the
degeneracy between dust grain coagulation, accretion, and CO-dark H2
Dust and Gas in the Magellanic Clouds from the Heritage Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm (Submillimeter) Excess Emission
The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations < 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations
Eco-innovation in Plant Breeding: Insights from the Sunflower Industry
International audienceSeeds are a major means for transforming farming systems and thus occupy a prominent place in the transition to more sustainable agriculture. This article analyses the conditions involved in creating and diffusing new plant breeds that have agroecological benefits, called eco-innovation varieties. By combining theories on eco-innovation processes with various scales of analysis, this study makes an original contribution to understanding innovation and transformation dynamics in the seed industry. Drawing on a case study of the sunflower industry in France and in Europe, the findings reveal which factors promote and hinder eco-innovation varieties. The results confirm the positive interactions between technology, regulation, and the market in eco-innovation processes. They also show that economic incentives for companies are insufficient to push them to develop more systemic eco-innovation varieties. Moreover, changes in the mainstream seed company regime, with the increasing internationalization of their strategies, call into question their ability to foster farming practices that promote the environmental benefits of these new varieties