65 research outputs found

    In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress

    Get PDF
    Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA–protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus

    Endpoints for Lymphatic Filariasis Programs

    Get PDF
    In 2000, annual mass administration of diethlycarbamazine and albendazole began in Leogane Commune, Haiti, to interrupt transmission of lymphatic filariasis (LF). After 5 years of treatment, microfilaremia, antigenemia, and mosquito infection rates were significantly reduced, but LF transmission was not interrupted. These finding have implications for other LF elimination programs

    Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    Get PDF
    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Full text link
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same dataset to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors, and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration, NIRISS AMI can reach contrast levels of ∌9−10\sim9-10 mag. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower mass exoplanets than ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal

    The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at 3.8 Όm\boldsymbol{3.8\,\rm{\mu m}}

    Full text link
    We present aperture masking interferometry (AMI) observations of the star HIP 65426 at 3.8 Όm3.8\,\rm{\mu m} as a part of the \textit{JWST} Direct Imaging Early Release Science (ERS) program obtained using the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument. This mode provides access to very small inner working angles (even separations slightly below the Michelson limit of 0.5λ/D{}0.5\lambda/D for an interferometer), which are inaccessible with the classical inner working angles of the \textit{JWST} coronagraphs. When combined with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the potential to probe a new portion of parameter space across a wide array of astronomical observations. Using this mode, we are able to achieve a contrast of ΔmF380M∌7.8\Delta m_{F380M}{\sim }7.8\,mag relative to the host star at a separation of {\sim}0.07\arcsec but detect no additional companions interior to the known companion HIP\,65426\,b. Our observations thus rule out companions more massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations ∌10−20 au{\sim}10{-}20\,\rm{au} from HIP\,65426, a region out of reach of ground or space-based coronagraphic imaging. These observations confirm that the AMI mode on \textit{JWST} is sensitive to planetary mass companions orbiting at the water frost line, even for more distant stars at ∌\sim100\,pc. This result will allow the planning and successful execution of future observations to probe the inner regions of nearby stellar systems, opening essentially unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b

    Get PDF
    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <<20 MJup_\mathrm{Jup} widely separated (∌\sim8\arcsec, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS modes for coverage from 1 ÎŒ\mum to 20 ÎŒ\mum at resolutions of ∌\sim1,000 - 3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the \textit{JWST} spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are hosted at this link: https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr

    Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility

    Get PDF
    The Mars Sample Return Planning Group 2 (MSPG2) was tasked with identifying the steps that encompass all the curation activities that would happen within the MSR Sample Receiving Facility (SRF) and any anticipated curation-related requirements. An area of specific interest is the necessary analytical instrumentation. The SRF would be a Biosafety Level-4 facility where the returned MSR flight hardware would be opened, the sample tubes accessed, and the martian sample material extracted from the tubes. Characterization of the essential attributes of each sample would be required to provide enough information to prepare a sample catalog used in guiding the preparation of sample-related proposals by the world’s research community and informing decisions by the sample allocation committee. The sample catalog would be populated with data and information generated during all phases of activity, including data derived concurrent with Mars 2020 sample-collecting rover activity, sample transport to Earth, and initial sample characterization within the SRF. We conclude that initial sample characterization can best be planned as a set of three sequential phases, which we have called Pre-Basic Characterization (Pre-BC), Basic Characterization (BC), and Preliminary Examination (PE), each of which requires a certain amount of instrumentation. Data on specific samples and subsamples obtained during sample safety assessments and time-sensitive scientific investigations would also be added to the catalog. There are several areas where future work would be beneficial to prepare for the receipt of samples, which would include the design of a sample tube isolation chamber and a strategy for opening the sample tubes and removing dust from the tube exteriors

    Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility

    Get PDF
    The most important single element of the “ground system” portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that “The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment.” There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards

    Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR)

    Get PDF
    The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive—they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report

    The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR)

    Get PDF
    Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023–24 for recovery by a subsequent mission no earlier than 2028–29, and possibly as late as 2030–31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars’ global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100 mg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust
    • 

    corecore