21 research outputs found

    Outflow Facility Effects of 3 Schlemm’s Canal Microinvasive Glaucoma Surgery Devices

    Get PDF
    Purpose To study the effect of 3 Schlemm’s canal (SC) microinvasive glaucoma surgery (MIGS) devices on outflow facility. Design Paired comparisons, randomized design, baseline-controlled study. Participants Thirty-six pairs of dissected anterior segments from donated human eye bank eyes without glaucoma were studied. A baseline measurement was collected from each eye to serve as its control. Methods Using a constant pressure perfusion method, outflow facility was measured in paired eyes from human donors. Measurements were made at perfusion pressures of 10 mmHg, 20 mmHg, 30 mmHg, and 40 mmHg. Outflow facility was measured before (baseline control) and after the implantation of an SC glaucoma drainage device or sham procedure. Three sets of experiments were carried out comparing 1 and 2 iStent Trabecular Micro-Bypass Stents and 2 iStent Inject implants with the Hydrus Microstent. Main Outcome Measures Change in outflow facility from baseline or contralateral eye. Results After Hydrus placement, the outflow facility increased from 0.23±0.03 μl/minute per millimeter of mercury at baseline to 0.38±0.03 μl/minute per millimeter of mercury (P < 0.001). The percent increase in outflow facility was 79±21% for the Hydrus and 11±16% for the 2 iStent Inject devices, a difference that was significant (P = 0.018). Outflow facility with 1 iStent (0.38±0.07 μl/minute per millimeter of mercury) was greater than baseline (0.28±0.03 μl/minute per millimeter of mercury; P = 0.031). The 1 iStent showed a greater increase in outflow facility from baseline (0.10±0.04 μl/minute per millimeter of mercury) compared with the sham procedure (–0.08±0.05 μl/minute per millimeter of mercury; P = 0.042). No other significant differences were found. Conclusions The longer the MIGS device, and thus the more SC that it dilates, the greater the outflow facility

    Intraocular pressure and aqueous humor flow during a euglycemic-hyperinsulinemic clamp in patients with type 1 diabetes and microvascular complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microvascular complications, including retinopathy and nephropathy are seen with type 1 diabetes. It is unknown whether functional changes in aqueous humor flow or intraocular pressure (IOP) develop in parallel with these complications. This study was designed to test the hypothesis that clinical markers of microvascular complications coexist with the alteration in aqueous humor flow and IOP.</p> <p>Methods</p> <p>Ten patients with type 1 diabetes and ten healthy age- and weight-matched controls were studied. Aqueous flow was measured by fluorophotometry during a hyperinsulinemic-euglycemic clamp (insulin 2 mU/kg/min). Intraocular pressure was measured by tonometry at -10, 90 and 240 minutes from the start of the clamp, and outflow facility was measured by tonography at 240 minutes.</p> <p>Results</p> <p>During conditions of identical glucose and insulin concentrations, mean aqueous flow was lower by 0.58 μl/min in the diabetes group compared to controls (2.58 ± 0.65 versus 3.16 ± 0.66 μl/min, respectively, mean ± SD, p = 0.07) but statistical significance was not reached. Before the clamp, IOP was higher in the diabetes group (22.6 ± 3.0 mm Hg) than in the control group (19.3 ± 1.8 mm Hg, p = 0.01) but at 90 minutes into the clamp, and for the remainder of the study, IOP was reduced in the diabetes group to the level of the control group. Ocular pulse amplitude and outflow facility were not different between groups. Systolic blood pressure was significantly higher in the diabetes group, but diastolic and mean arterial pressures were not different.</p> <p>Conclusions</p> <p>We conclude that compared to healthy participants, patients with type 1 diabetes having microalbuminuria and retinopathy have higher IOPs that are normalized by hyperinsulinemia. During the clamp, a reduction in aqueous flow was not statistically significant.</p

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Endothelial Glycocalyx Morphology in Different Flow Regions of the Aqueous Outflow Pathway of Normal and Laser-Induced Glaucoma Monkey Eyes

    No full text
    Glycocalyx morphology was examined in the trabecular outflow pathway of monkey eyes with and without experimental glaucoma. Laser burns were administered along ~270 degrees of the trabecular meshwork (TM) of one eye (n = 6) or both eyes (n = 2) of each monkey until intraocular pressure remained elevated. Portions of the TM were not laser-treated. Unlasered eyes (n = 6) served as controls. Enucleated eyes were perfused at 15 mmHg to measure the outflow facility, perfused with fluorescein to evaluate the outflow pattern, perfusion-fixed for glycocalyx labeling, and processed for electron microscopy. Coverage and thickness of the glycocalyx were measured in the TM, Schlemm’s canal (SC), collector channels (CCs), intrascleral veins (ISVs), and episcleral veins (ESVs) in non-lasered regions and high- and low-flow regions of controls. Compared to controls, laser-treated eyes had decreased outflow facility (p = 0.02). Glycocalyx thickness increased from the TM to ESVs in non-lasered regions and controls (p p < 0.05). In lasered regions, TM, SC, and CCs were partly to completely obliterated, and ISVs and ESVs displayed minimal glycocalyx. Whether the glycocalyx is decreased in the trabecular outflow pathway of human glaucomatous eyes warrants investigation

    Accommodative Exercises to Lower Intraocular Pressure

    No full text
    Purpose. This study investigated how a conscious change in ocular accommodation affects intraocular pressure (IOP) and ocular biometrics in healthy adult volunteers of different ages. Methods. Thirty-five healthy volunteers without ocular disease or past ocular surgery, and with refractive error between −3.50 and +2.50 diopters, were stratified into 20, 40, and 60 year old (y.o.) age groups. Baseline measurements of central cornea thickness, anterior chamber depth, anterior chamber angle, cornea diameter, pupil size, and ciliary muscle thickness were made by autorefraction and optical coherence tomography (OCT), while IOP was measured by pneumotonometry. Each subject’s right eye focused on a target 40 cm away. Three different tests were performed in random order: (1) 10 minutes of nonaccommodation (gazing at the target through lenses that allowed clear vision without accommodating), (2) 10 minutes of accommodation (addition of a minus 3 diopter lens), and (3) 10 minutes of alternating between accommodation and nonaccommodation (1-minute intervals). IOP was measured immediately after each test. A 20-minute rest period was provided between tests. Data from 31 subjects were included in the study. ANOVA and paired t-tests were used for statistical analyses. Results. Following alternating accommodation, IOP decreased by 0.7 mmHg in the right eye when all age groups were combined (p = 0.029). Accommodation or nonaccommodation alone did not decrease IOP. Compared to the 20 y.o. group, the 60 y.o. group had a thicker ciliary muscle within 75 μm of the scleral spur, a thinner ciliary muscle at 125–300 μm from the scleral spur, narrower anterior chamber angles, shallower anterior chambers, and smaller pupils during accommodation and nonaccommodation (p’s < 0.01). Conclusion. Alternating accommodation, but not constant accommodation, significantly decreased IOP. This effect was not lost with aging despite physical changes to the aging eye. A greater accommodative workload and/or longer test period may improve the effect

    Regulation of Ocular Angiogenesis by Notch Signaling: Implications in Neovascular Age-Related Macular Degeneration

    No full text
    This study identifies the Notch pathway as a putative molecular target for therapeutic intervention in wet age-related macular degeneration
    corecore