5 research outputs found

    FURIN regulates cytotoxic T-lymphocyte effector function and memory cell transition in mice

    No full text
    Abstract The proprotein convertase subtilisin/kexins (PCSKs) regulate biological actions by cleaving immature substrate proteins. The archetype PCSK, FURIN, promotes the pathogenicity of viruses by proteolytically processing viral proteins. FURIN has also important regulatory functions in both innate and adaptive immune responses but its role in the CD8+ CTLs remains enigmatic. We used a T-cell-specific FURIN deletion in vivo to demonstrate that FURIN promotes host response against the CTL-dependent lymphocytic choriomeningitis virus by virtue of restricting viral burden and augmenting interferon gamma (IFNG) production. We also characterized Furin KO CD8+ T cells ex vivo, including after their activation with FURIN regulating cytokines IL12 or TGFB1. Furin KO CD8+ T cells show an inherently activated phenotype characterized by the upregulation of effector genes and increased frequencies of CD44+, TNF+, and IFNG+ cells. In the activated CTLs, FURIN regulates the productions of IL2, TNF, and GZMB and the genes associated with the TGFBR-signaling pathway. FURIN also controls the expression of Eomes, Foxo1, and Bcl6 and the levels of ITGAE and CD62L, which implies a role in the development of CTL memory. Collectively, our data suggest that the T-cell expressed FURIN is important for host responses in viral infections, CTL homeostasis/activation, and memory development

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at √s = 13 TeV

    No full text
    The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye| < 0.8) in proton–proton (pp) collisions at a centre-of-mass energy of √s = 13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at √s = 7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσccÂŻ/dy|y=0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214(BR) ÎŒb and dσbbÂŻ /dy|y=0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5(BR) ÎŒb using PYTHIA simulations and dσccÂŻ/dy|y=0 = 1417 ± 184 (stat.) ± 204 (syst.) ± 312(BR) ÎŒb and dσbbÂŻ /dy|y=0 = 48 ± 14 (stat.) ± 7 (syst.) ± 3(BR) ÎŒb for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various pT intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of pT. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations

    Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    No full text
    International audienceAnisotropic flow coefficients, vn_{n}, non-linear flow mode coefficients, χn,mk_{n,mk}, and correlations among different symmetry planes, ρn,mk_{n,mk} are measured in Pb-Pb collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT_{T}< 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn_{n} coefficients and χn,mk_{n,mk} and ρn,mk_{n,mk} are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.[graphic not available: see fulltext
    corecore