106 research outputs found

    Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival

    Get PDF
    Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism

    Early inhaled budesonide for the prevention of bronchopulmonary dysplasia

    Get PDF
    BACKGROUND Systemic glucocorticoids reduce the incidence of bronchopulmonary dysplasia among extremely preterm infants, but they may compromise brain development. The effects of inhaled glucocorticoids on outcomes in these infants are unclear. METHODS We randomly assigned 863 infants (gestational age, 23 weeks 0 days to 27 weeks 6 days) to early (within 24 hours after birth) inhaled budesonide or placebo until they no longer required oxygen and positive-pressure support or until they reached a postmenstrual age of 32 weeks 0 days. The primary outcome was death or bronchopulmonary dysplasia, confirmed by means of standardized oxygen-saturation monitoring, at a postmenstrual age of 36 weeks. RESULTS A total of 175 of 437 infants assigned to budesonide for whom adequate data were available (40.0%), as compared with 194 of 419 infants assigned to placebo for whom adequate data were available (46.3%), died or had bronchopulmonary dysplasia (relative risk, stratified according to gestational age, 0.86; 95% confidence interval [CI], 0.75 to 1.00; P = 0.05). The incidence of bronchopulmonary dysplasia was 27.8% in the budesonide group versus 38.0% in the placebo group (relative risk, stratified according to gestational age, 0.74; 95% CI, 0.60 to 0.91; P = 0.004); death occurred in 16.9% and 13.6% of the patients, respectively (relative risk, stratified according to gestational age, 1.24; 95% CI, 0.91 to 1.69; P = 0.17). The proportion of infants who required surgical closure of a patent ductus arteriosus was lower in the budesonide group than in the placebo group (relative risk, stratified according to gestational age, 0.55; 95% CI, 0.36 to 0.83; P = 0.004), as was the proportion of infants who required reintubation (relative risk, stratified according to gestational age, 0.58; 95% CI, 0.35 to 0.96; P = 0.03). Rates of other neonatal illnesses and adverse events were similar in the two groups. CONCLUSIONS Among extremely preterm infants, the incidence of bronchopulmonary dysplasia was lower among those who received early inhaled budesonide than among those who received placebo, but the advantage may have been gained at the expense of increased mortality

    Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): Study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III)

    Get PDF
    Background: Perinatal asphyxia and resulting hypoxic-ischemic encephalopathy is a major cause of death and long-term disability in term born neonates. Up to 20,000 infants each year are affected by HIE in Europe and even more in regions with lower level of perinatal care. The only established therapy to improve outcome in these infants is therapeutic hypothermia. Allopurinol is a xanthine oxidase inhibitor that reduces the production of oxygen radicals as superoxide, which contributes to secondary energy failure and apoptosis in neurons and glial cells after reperfusion of hypoxic brain tissue and may further improve outcome if administered in addition to therapeutic hypothermia. Methods: This study on the effects of ALlopurinol in addition to hypothermia treatment for hypoxic-ischemic Brain Injury on Neurocognitive Outcome (ALBINO), is a European double-blinded randomized placebo-controlled parallel group multicenter trial (Phase III) to evaluate the effect of postnatal allopurinol administered in addition to standard of care (including therapeutic hypothermia if indicated) on the incidence of death and severe neurodevelopmental impairment at 24 months of age in newborns with perinatal hypoxic-ischemic insult and signs of potentially evolving encephalopathy. Allopurinol or placebo will be given in addition to therapeutic hypothermia (where indicated) to infants with a gestational age 65 36 weeks and a birth weight 65 2500 g, with severe perinatal asphyxia and potentially evolving encephalopathy. The primary endpoint of this study will be death or severe neurodevelopmental impairment versus survival without severe neurodevelopmental impairment at the age of two years. Effects on brain injury by magnetic resonance imaging and cerebral ultrasound, electric brain activity, concentrations of peroxidation products and S100B, will also be studied along with effects on heart function and pharmacokinetics of allopurinol after iv-infusion. Discussion: This trial will provide data to assess the efficacy and safety of early postnatal allopurinol in term infants with evolving hypoxic-ischemic encephalopathy. If proven efficacious and safe, allopurinol could become part of a neuroprotective pharmacological treatment strategy in addition to therapeutic hypothermia in children with perinatal asphyxia. Trial registration: NCT03162653, www.ClinicalTrials.gov, May 22, 2017

    Research priorities in pediatric parenteral nutrition: a consensus and perspective from ESPGHAN/ESPEN/ESPR/CSPEN

    Get PDF
    Parenteral nutrition is used to treat children that cannot be fully fed by the enteral route. While the revised ESPGHAN/ESPEN/ESPR/CSPEN pediatric parenteral nutrition guidelines provide clear guidance on the use of parenteral nutrition in neonates, infants, and children based on current available evidence, they have helped to crystallize areas where research is lacking or more studies are needed in order to refine recommendations. This paper collates and discusses the research gaps identified by the authors of each section of the guidelines and considers each nutrient or group of nutrients in turn, together with aspects around delivery and organization. The 99 research priorities identified were then ranked in order of importance by clinicians and researchers working in the field using a survey methodology. The highest ranked priority was the need to understand the relationship between total energy intake, rapid catch-up growth, later metabolic function, and neurocognitive outcomes. Research into the optimal intakes of macronutrients needed in order to achieve optimal outcomes also featured prominently. Identifying research priorities in PN should enable research to be focussed on addressing key issues. Multicentre trials, better definition of exposure and outcome variables, and long-term metabolic and developmental follow-up will be key to achieving this. Impact: The recent ESPGHAN/ESPEN/ESPR/CSPEN guidelines for pediatric parenteral nutrition provided updated guidance for providing parenteral nutrition to infants and children, including recommendations for practice.However, in several areas there was a lack of evidence to guide practice, or research questions that remained unanswered. This paper summarizes the key priorities for research in pediatric parenteral nutrition, and ranks them in order of importance according to expert opinion

    Apnea of prematurity: from cause to treatment

    Get PDF
    Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a “physiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment

    The Italian arm of the PREPARE study: an international project to evaluate and license a maternal vaccine against group B streptococcus.

    Get PDF
    BACKGROUND: Group B streptococcus (GBS) is a leading cause of sepsis, pneumonia and meningitis in infants, with long term neurodevelopmental sequelae. GBS may be associated with poor pregnancy outcomes, including spontaneous abortion, stillbirth and preterm birth. Intrapartum antibiotic prophylaxis (IAP) is currently the only way to prevent early-onset disease (presenting at 0 to 6 days of life), although it has no impact on the disease presenting over 6 days of life and its implementation is challenging in resource poor countries. A maternal vaccine against GBS could reduce all GBS manifestations as well as improve pregnancy outcomes, even in low-income countries. MAIN BODY: The term "PREPARE" designates an international project aimed at developing a maternal vaccination platform to test vaccines against neonatal GBS infections by maternal immunization. It is a non-profit, multi-center, interventional and experimental study (promoted by the St George University of London. [UK]) with the aim of developing a maternal vaccination platform, determining pregnancy outcomes, and defining the extent of GBS infections in children and mothers in Africa. PREPARE also aims to estimate the protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa and to conduct two trials on candidate GBS vaccines. PREPARE consists of 6 work packages. In four European countries (Italy, UK, Netherlands, France) the recruitment of cases and controls will start in 2020 and will end in 2022. The Italian PREPARE network includes 41 centers. The Italian network aims to collect: GBS isolates from infants with invasive disease, maternal and neonatal sera (cases); cord sera and GBS strains from colonized mothers whose infants do not develop GBS infection (controls). SHORT CONCLUSION: PREPARE will contribute information on protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa. The vaccine that will be tested by the PREPARE study could be an effective strategy to prevent GBS disease

    Glucose kinetics and glucoregulatory hormone levels in ventilated preterm infants on the first day of life

    No full text
    Glucose production and oxidation were measured in ventilated preterm appropriate-for-gestational-age and small-for-gestational-age infants on the first day of life. Using a new technique of NaH13CO3 infusion followed by a [U-13C]glucose infusion, we measured glucose oxidation rates without measuring the CO2 production rate. Infants were studied at 18 +/- 4 h (mean +/- 1 SD) of life and received parenterally administered glucose only (4.2 +/- 0.5 mg.kg-1 x min-1). In 13 of 16 patients, the glucose production rate exceeded 1.0 mg.kg-1 x min-1. Infants born from mothers who had been receiving steroids antenatally had higher glucose production rates (2.3 +/- 1.1 mg.kg-1 x min-1) compared with infants from mothers who had not (1.1 +/- 0.8 mg.kg-1 x min-1, p = 0.036). The glucose oxidized (2.9 +/- 1.0 mg.kg-1 x min-1) was lower than the amount of glucose infused (p = 0.005) and was not different for appropriate-for-gestational-age and small-for-gestational-age infants. Plasma levels of glucose, insulin, glucagon, and total IGF-I were not correlated with glucose metabolism on the first day of life. Total IGF-II levels were negatively correlated with the rate of glucose appearance. We conclude that preterm infants on the first day of life receiving a glucose infusion of 4.2 mg.kg-1 x min-1 continue to produce glucose. The glucose oxidation rate is lower than the glucose infusion rate and the contribution of glucose oxidation to the total energy expenditure is limite

    Immediate commencement of amino acid supplementation in preterm infants: effect on serum amino acid concentrations and protein kinetics on the first day of life

    No full text
    To determine whether the general reluctance to begin amino acid administration to preterm infants from birth onward might lead to loss of lean body mass and impairment of growth, we measured amino acid levels and protein kinetics in 18 preterm infants. Nine infants received amino acids (1.15 +/- 0.06 gm.kg-1.day-1) and glucose (6.05 +/- 1.58 gm.kg-1.day-1), whereas the other nine infants received only glucose (6.48 +/- 1.30 gm.kg-1.day-1) from birth onward. Protein kinetics on the first postnatal day were measured with a stable isotope dilution technique with [1-13C]leucine as a tracer. No statistically significant differences were noted in blood pH, base excess, urea concentration, or glucose levels. Both total amino acid concentration and total essential amino acid concentration were significantly lower and were below the reference range in the nonsupplemented group. Plasma amino acid levels of five essential amino acids (methionine, cystine, isoleucine, leucine, arginine) were below the reference range in the nonsupplemented group, whereas only cystine was below the reference range in the supplemented group. Nitrogen retention was improved significantly by the administration of amino acids (-110 +/- 44 mg nitrogen per kilogram per day in the glucose-only group vs +10 +/- 127 mg nitrogen per kilogram per day in the group given glucose and amino acids; p = 0.001); leucine oxidation was not significantly increased in the supplemented group (41 +/- 13 mumol.kg-1.hr-1 vs 46 +/- 16 mumol.kg-1.hr-1). Leucine balance also improved significantly (-41 +/- 13 mumol.kg-1.hr-1 vs -8 +/- 16 mumol.kg-1.hr-1; p = 0.01) because of a combination of an increased amount of leucine being used for protein synthesis and a lower amount of leucine coming from protein breakdown. Plasma cystine concentration, the only amino acid below the reference range in the supplemented group, was highly predictive for protein synthesis in that group. We conclude that the administration of amino acids to preterm infants from birth onward seems safe and prevents the loss of protein mas
    corecore