4 research outputs found

    Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement

    Get PDF
    Nucleus pulposus (NP) replacement offers a minimally invasive alternative to spinal fusion or total disc replacement for the treatment of intervertebral disc (IVD) degeneration. This study aimed to develop a cytocompatible {NP} replacement material, which is feasible for non-invasive delivery and tunable design, and allows immediate mechanical restoration of the IVD. A bi-phasic polyurethane scaffold was fabricated consisting of a core material with rapid swelling property and a flexible electrospun envelope. The scaffold was assessed in a bovine whole {IVD} organ culture model under dynamic load for 14 days. Nucleotomy was achieved by incision through the endplate without damaging the annulus fibrosus. After implantation of the scaffold and in situ swelling, the dynamic compressive stiffness and disc height were restored immediately. The scaffold also showed favorable cytocompatibility for native disc cells. Implantation of the scaffold in a partially nucleotomized {IVD} down-regulated catabolic gene expression, increased proteoglycan and type {II} collagen intensity and decreased type I collagen intensity in remaining {NP} tissue, indicating potential to retard degeneration and preserve the {IVD} cell phenotype. The scaffold can be delivered in a minimally invasive manner, and the geometry of the scaffold post-hydration is tunable by adjusting the core material, which allows individualized design. Keywords : Intervertebral disc degeneratio

    Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells

    No full text
    Pancreatic β-cells couple glucose-stimulated insulin secretion (GSIS) with oxidative phosphorylation via cytochrome c oxidase (COX), a mitochondrial respiratory-chain enzyme. The Cohen diabetic-sensitive (CDs) rats exhibit hyperglycemia when fed a diabetogenic diet but maintain normoglycemia on a regular diet. We have previously reported a decreased COX activity in CDs rats and explored its relevance for type 2 diabetes (T2D). In this study, we investigated the relation between COX activity in islets, peripheral-blood mononuclear cells (PBMCs), and GSIS during diabetes development in CDs rats fed a diabetogenic diet for 4, 11, 20, and 30 days and during reversion to normoglycemia in hyperglycemic CDs rats fed a reversion diet for 7, 11, and 20 days. An oral glucose-tolerance test was performed at different periods of the diets measuring blood glucose and insulin concentrations. COX activity was determined in islets and PBMCs isolated from rats at the different periods of the diets. We demonstrated a progressive reduction in COX activity in CDs-islets that correlated positively with the decreasing GSIS (R2 = 0.9691, p < 0.001) and inversely with the elevation in blood glucose levels (R2 = 0.8396, p < 0.001). Hyperglycemia was initiated when islet COX activity decreased below 46%. The reversion diet restored >46% of the islet COX activity and GSIS while re-establishing normoglycemia. Interestingly, COX activity in PBMCs correlated significantly with islet COX activity (R2 = 0.8944, p < 0.001). Our data support islet COX activity as a major metabolic regulator of β-cells function. The correlation between COX activity in PBMCs and islets may serve as a noninvasive biomarker to monitor β-cell dysfunction in diabetes
    corecore