7 research outputs found

    Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells

    Get PDF
    Background Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. Methods Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification. Results The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. Conclusions This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. General significance This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.Fil: Rossotti, MartĂ­n. Universidad de la RepĂșblica. Facultad de QuĂ­mica; UruguayFil: Tabares, SofĂ­a. Universidad de la RepĂșblica. Facultad de QuĂ­mica; UruguayFil: Alfaya, LucĂ­a. Universidad de la RepĂșblica. Facultad de QuĂ­mica; UruguayFil: Leizagoyen, Carmen. No especifĂ­ca;Fil: Moron, Victor Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: GonzĂĄlez Sapienza, Gualberto. Universidad de la RepĂșblica. Facultad de QuĂ­mica; Urugua

    Spreading of the High-Pathogenicity Avian Influenza (H5N1) Virus of Clade 2.3.4.4b into Uruguay

    No full text
    Background: Avian influenza viruses (genus Alphainfluenzavirus, family Orthomyxoviridae) infect avian and mammal hosts. In 2022, the high pathogenicity avian influenza virus (H5N1) spread to South America, resulting in the loss of thousands of wild birds, including endangered species, and severely impacting the global poultry industry. Objectives: We analyzed the complete genomes of influenza viruses obtained from wild birds and backyard poultry in Uruguay between February and May 2023. Methods: Twelve complete genomes were obtained in 2023 from cloacal swabs using Illumina sequencing. Genomes were phylogenetically analyzed with regional and global strains. Findings: The identified strains have multiple basic amino acids at the hemagglutinin cleavage sites, which is typical for highly pathogenic strains. The Uruguayan viruses belonged to hemagglutinin clade 2.3.4.4b of the H5N1 subtype. A reassortment in North America has resulted in some segments of South American strains being of Eurasian or North American origins. The Uruguayan viruses shared a common ancestor with South American strains from Argentina and Chile. The influenza viruses displayed a spatiotemporal divergence pattern rather than being host-specific. Main Conclusions: The arrival of the 2.3.4.4b clade in Uruguay may have been mediated by birds that acquired the virus from Argentine and Chilean waterfowl migrating in the Pacific Flyway

    Comparison of Three Antihapten VHH Selection Strategies for the Development of Highly Sensitive Immunoassays for Microcystins

    No full text
    Owing to their reproducibility, stability, and cost-effective production, the recombinant variable domains of heavy-chain-only antibodies (VHHs) are becoming a salient option as immunoassay reagents. Recently, there have been several reports describing their application to the detection of small molecules (haptens). However, lacking the heavy-light chain interface of conventional antibodies, VHHs are not particularly apt to bind small analytes and failures are not uncommon. Here we describe the construction of a VHH phage display library against the cyanobacterial hepatotoxin microcystin LR and its selection using competitive panning and two novel panning strategies. The outcome of each strategy was evaluated by a large-scale screening using <i>in vivo</i> biotinylated nanobodies. The three methods selected for different nonoverlapping subsets of VHHs, allowing one to optimize the immunodetection of the toxin. The best results were obtained by promoting the isolation of VHHs with the slowest <i>k</i><sub>off</sub> (off-rate selection). Among these, the biotinylated nanobody A2.3 performed in ELISA with excellent recovery and high sensitivity, IC50 = 0.28 ÎŒg/L, with a limit of detection that is well below the most rigorous guidelines for the toxin. While it may be case-specific, these results highlight the importance of exploring different panning strategies to optimize the selection of antihapten nanobodies

    Method for Sorting and Pairwise Selection of Nanobodies for the Development of Highly Sensitive Sandwich Immunoassays

    No full text
    Single domain heavychain binders (nanobodies) obtained from camelid antibody libraries hold a great promise for immunoassay development. However, there is no simple method to select the most valuable nanobodies from the crowd of positive clones obtained after the initial screening. In this paper, we describe a novel nanobody-based platform that allows comparison of the reactivity of hundreds of clones with the labeled antigen, and identifies the best nanobody pairs for two-site immunoassay development. The output clones are biotinylated in vivo in 96-well culture blocks and then used to saturate the biotin binding capacity of avidin coated wells. This standardizes the amount of captured antibody allowing their sorting by ranking their reactivity with the labeled antigen. Using human soluble epoxide hydrolase (sEH) as a model antigen, we were able to classify 96 clones in four families and confirm this classification by sequencing. This provided a criterion to select a restricted panel of five capturing antibodies and to test each of them against the rest of the 96 clones. The method constitutes a powerful tool for epitope binning, and in our case allowed development of a sandwich ELISA for sEH with a detection limit of 63 pg/mL and four log dynamic range, which performed with excellent recovery in different tissue extracts. This strategy provides a systematic way to test nanobody pairwise combinations and would have a broad utility for the development of highly sensitive sandwich immunoassays

    Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells

    No full text
    BACKGROUND: Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domain (nanobody) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. METHODS: Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct used for pull-down/MS target identification. RESULTS: The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. CONCLUSIONS: This strategy streamline the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. GENERAL SIGNIFICANCE: This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets

    Reflexiones acerca del "reasilvestramiento" en la Argentina

    No full text
    corecore