266 research outputs found

    Flow injection photoinduced chemiluminescence determination of imazalil in water samples

    Full text link
    The final publication is available at link.springer.com[EN] In this work, a fast, simple and economic method is proposed for the determination of imazalil in water samples by flow injection photoinduced chemiluminescence. In this method, imazalil degrades in basic media through the use of a photoreactor, and the resulting photofragments react with ferricyanide and generate the direct chemiluminescence signal. To the authors' knowledge, this is the first time that a chemiluminescence method has been proposed for the determination of this fungicide. All physical and chemical parameters in the flow injection chemiluminescence system were optimized in the experimental setting. In the absence of preconcentration, the linear dynamic range for imazalil was 0.75-5 mg L(-1) and the detection limit was 0.171 mg L(-1). The application of solid-phase extraction with C18 cartridges allowed the elimination of interference ions, the reduction of the linear dynamic range to 15-100 mu g L(-1), and a detection limit of 3.4 mu g L(-1). This detection limit is below the maximum concentration level established by the Regulations of the Hydraulic Public Domain for pesticide dumping. The sample throughput after solid-phase extraction of the analyte was 12 samples h(-1). The intraday and interday coefficients of variation were below 9.9% in all cases. This method was applied to the analysis of environmental water samples, and recoveries of between 95.7 and 110% were obtained.The authors are grateful to The Spanish Ministry of Education and Science and FEDER funds for financial support (project CTM2006-11991). The translation of this paper was funded by the Universidad Politécnica de Valencia, Spain.Meseguer-Lloret, S.; Torres-Cartas, S.; Gómez Benito, C. (2010). Flow injection photoinduced chemiluminescence determination of imazalil in water samples. Analytical and Bioanalytical Chemistry. 398(7-8):3175-3182. https://doi.org/10.1007/s00216-010-4227-1S317531823987-8EC (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. European Council, BrusselsSpanish Ministry of Public Works and Transportation (1986) Royal Decree 849/1986 of 11 April of the Regulations of the Hydraulic Public Domain. Spanish Ministry of Public Works and Transportation, MadridPicó Y, la Farré M, Soler C, Barceló D (2007) J Chromatogr A 1176(1-2):123–134Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27(5):481–489Yoshioka N, Akiyama Y, Teranishi K (2004) J Chromatogr A 1022(1–2):145–150Watanabe E, Yoshimura Y, Yuasa Y, Nakazawa H (2001) Anal Chim Acta 433(2):199–206Ito Y, Ikai Y, Oka H, Hayakawa J, Kagami T (1998) J Chromatogr A 810(1-2):81–87Garrido J, de Alba M, Jimenez I, Casado E, Folgueiras ML (1997) J Chromatogr A 765(1):91–97Charlton AJA, Jones A (2007) J Chromatogr A 1141(1):117–122Rodríguez R, Picó Y, Font G, Mañes J (2001) J Chromatogr A 924(1-2):387–396Balinova A (1995) Anal Chim Acta 311(3):423–427Menezes Filho A, Neves dos Santos F, Afonso de Pereira P (2010) Mikrochemical J 96:139–145Beale DJ, Porter NA, Roddick FA (2009) Talanta 78(2):342–347Albert-García JR, Martínez-Calatayud J (2008) Talanta 75(3):717–724Meseguer-Lloret S, Campíns-Falcó P, Tortajada-Genaro LA, Blasco-Gómez F (2003) Int J Environ Anal Chem 83(5):405–416Moliner-Martínez Y, Meseguer-Lloret S, Tortajada-Genaro LA, Campíns-Falcó P (2003) Talanta 60(2-3):257–268Lin Q, Guiraúm A, Escobar R, de la Rosa F (1993) Anal Chim Acta 283(1):379–385Townshend A, Ruengsitagoon W, Thongpoon C, Liawruangrath S (2005) Anal Chim Acta 541:105–111Lattanzio G, García-Campaña AM, Soto-Chinchilla JJ, Gámiz-Gracia L, Girotti S (2008) J Pharm Biomed Anal 46(2):381–385Catalá Icardo M, García Mateo JV, Fernández Lozano M, Martínez Calatayud J (2003) Anal Chim Acta 499(1-2):57–69Ciborowski M, Catalá Icardo M, García Mateo JV, Martínez Calatayud J (2004) J Pharm Biomed Anal 36(4):693–700Yang XF, Li H (2004) Talanta 64(2):478–483Gómez-Taylor B, Palomeque M, García Mateo JV, Martínez Calatayud J (2006) J Pharm Biomed Anal 41(2):347–357López Paz JL, Catalá-Icardo M (2008) Anal Chim Acta 625(2):173–179López Malo D, Martínez Calatayud J (2008) Talanta 77(2):561–56

    FI on-line chemiluminescence reaction for determination of MCPA in water samples

    Full text link
    This paper reports an economic, simple, and rapid FI-CL method for the determination of MCPA. This method requires simple instrumentation and it is fast enough to be used in routine analyses. A chemiluminescence signal is generated by reaction between photodegraded MCPA and ferricyanide solution in alkaline medium. All physical and chemical parameters in the flow injection chemiluminescence system were optimized in the experimental setting. To eliminate interference, a solid-phase extraction stage with SDB-1 cartridges and ethanol elution is applied. The signal-MCPA concentration relation is linear in concentration intervals between 0.0015 and 0.6 ¿g¿mL -1. The calibration lines are statistically similar in different working conditions: standards with ethanol without extraction and standards with ethanol and extraction, allowing standards to be excluded from the extraction step, which simplifies the process. The detection limit (DL) is 0.5 ng¿mL -1, which is the same order as the maximum limit established in legislation regarding pesticide limits in water destined for human consumption. A DL of 0.13 ng¿mL -1 can be reached if a sample of 100 mL is preconcentrated. The interday variance coefficient is 3% and the sample throughput is 90 h -1. The water analysis method is efficient with relative error percentages lower than 5% with respect to the added concentration. © 2011 Springer-Verlag.Authors acknowledge to the "Ministerio de Educacion y Ciencia" of Spain and FEDER funds for financial support (Project CTM2006-11991)Torres Cartas, S.; Gómez Benito, C.; Meseguer-Lloret, S. (2012). FI on-line chemiluminescence reaction for determination of MCPA in water samples. Analytical and Bioanalytical Chemistry. 402:1289-1296. https://doi.org/10.1007/s00216-011-5567-112891296402Navarro JS (2008) Utilización de plaguicidas en las asociaciones de tratamientos integrados en agricultura en la región de Murcia. Consejería de Sanidad Región de MurciaBarceló D, Hennion MC (1997) Trace determination of pesticide and their degradation products in water. Elsevier, AmsterdamKöck M, Farré M, Martínez E, Gajda-Schrantz K, Ginebreda A, Navarro A, López de Alda M, Barceló D (2010) J Hydrol 383(1–2):73–82Woudneh MB, Sekela M, Tuominen T, Gledhill M (2007) J Chromatogr A 1139(1):121–129Laganà A, Bacaloni A, De-Leva I, Faberi A, Fago G, Marino A (2002) Anal Chim Acta 462:187–198Comoretto L, Arfib B, Chiron S (2007) Sci Total Environ 380(1–3):124–132Kuster M, de Alda MJL, Barata C, Raldá D, Barceló D (2008) Talanta 75(2):390–401Kuster M, de Alda MJL, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D (2008) J Hydrol 358(1–2):112–123Gervais G, Brosillon S, Laplanche A, Helen C (2008) J Chromatogr A 1202(2):163–172Housari F, Höhener P, Chiron S (2011) Sci Total Environ 409(3):582–587Delhomme O, Raeppel C, Briand O, Millet M (2011) Anal Bioanal Chem 399:1325–1334Royal decree 140/2003, 7th of February that establishes the health criteria for the water quality for human consumption. (BOE 21 February 2003)von-der-Ohe PC, Dulio V, Slobodnik J, de-Deckere E, Köhne R, Ebert RU, Ginebreda A, de-Cooman de-Cooman W, Schüürmann G, Brack W (2011) Sci Total Environ 409(11):2064–2077Horwitz W (ed) (2000) Official methods of analysis of AOAC International, 17th edn. AOAC International, GaithersburgMoret S, Sánchez JM, Salvadó V, Hidalgo M (2005) J Chromatogr A 1099(1–2):55–63Tran ATK, Hyne RV, Doble P (2007) Chemosphere 67(5):944–953Long F, Shi HC, He M, Zhu AN (2008) Biosens Bioelectron 23:1361–1366Meulenberg EP, Stoks PG (1995) Anal Chim Acta 311:407–413Chuang JC, Van Emon JM, Durnford J, Thomas K (2005) Talanta 67:658–666Boro RC, Kaushal J, Nangia Y, Wangoo N, Bhashi A, Suri CR (2011) Analyst 136(10):2125–2130Eremin SA, Laassis P, Aaron JJ (1996) Talanta 43:295–301Almansa-López EM, García-Campaña AM, Aaron JJ, Cuadros-Rodriguez L (2003) Talanta 60:355–367García LF, Eremin S, Aaron JJ (1996) Anal Lett 29(8):1447–1461García-Campaña AM, Aaron JJ, Bosque-Sendra JM (2002) Luminescence 17:285–287Lara FJ, García-Campaña AM, Aaron JJ (2010) Anal Chim Acta 679:17–30López-Paz J, Catalá-Icardo M (2011) Anal Lett 44(1–3):146–175Mbaye M, Gaye-Seye M, Aaron JJ, Coly A, Tine A (2011) Anal Bioanal Chem 400(2):403–410López-Paz JL, Catalá-Icardo M, Antón-Garrido B (2009) Anal Bioanal Chem 394:1073–1079López-Paz J, Catalá-Icardo M (2008) Anal Chim Acta 625(2):173–179Chen X, Lin Z, Cai Z, Chen X, Wang X (2008) Talanta 76(5):1083–1087Meseguer-Lloret S, Torres-Cartas S, Gómez-Benito M (2010) Anal Bioanal Chem 398:3175–3182Catalá-Icardo M, Martínez-Calatayud J (2008) Crit Rev Anal Chem 38(2):118–13

    Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence

    Full text link
    In this work, a sensitive flow injection chemiluminescence (FI-CL) method for the determination of nematicide Fenamiphos in a rapid and simple way is proposed. Fenamiphos is first photodegraded in basic medium. These photofragments react with Ce(IV) providing the chemiluminescence signal. To the authors' knowledge, no chemiluminescence method has been described in the literature for the determination of the nematicide Fenamiphos. All physical and chemical parameters in the flow injection chemiluminescence system were optimized in order to obtain the best sensitivity, selectivity and sample throughput. Before the injection of the sample in the FI-CL system, a preconcentration step with solid phase extraction C18 cartridges was performed. By applying solid phase extraction (SPE) to 250 mL of standard (final volume 10 mL), the linear dynamic range was between 3.4 and 60 µg L-1, and the detection limit was 1 µg L-1. When SPE was applied to 500 mL of standard (final volume 10 mL), the detection limit was 0.5 µg L-1. These detection limits are below the emission limit value established by the Spanish Regulations of the Hydraulic Public Domain for pesticides (50 µg L-1) and of the same order as the limit established for total pesticides (0.5 µg L-1) at European Directive on the quality of water for human consumption. The sample throughput was 126 hour-1. Intraday and interday coefficients of variation were below 10% in all cases. No interference was registered in presence of usual concentrations of anions, cations and other organophosphorus pesticides. The method was successfully applied to the analysis of environmental water samples, obtaining recoveries between 96 and 107.5%. © 2013 Copyright Taylor and Francis Group, LLC.The authors are grateful to The Spanish Ministry of Education and Science and FEDER funds for financial support: Project CTM2006-11991.Gómez Benito, C.; Meseguer Lloret, S.; Torres Cartas, S. (2013). Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence. International Journal of Environmental Analytical Chemistry. 93(2):152-165. https://doi.org/10.1080/03067319.2012.663755S152165932Lacorte, S., & Barcel��, D. (2006). Organophosphorus Pesticides in Water and Food, Analysis of. Encyclopedia of Analytical Chemistry. doi:10.1002/9780470027318.a1717Li, Y., George, J. E., & McCarty, C. L. (2007). Online in situ analysis of selected semi-volatile organic compounds in water by automated microscale solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry. Journal of Chromatography A, 1176(1-2), 223-230. doi:10.1016/j.chroma.2007.10.054Albanis, T. A., Hela, D. G., Lambropoulou, D. A., & Vasilios, A. S. (2004). Gas chromatographic–mass spectrometric methodology using solid-phase microextraction for the multiresidue determination of pesticides in surface waters. International Journal of Environmental Analytical Chemistry, 84(14-15), 1079-1092. doi:10.1080/0306731042000268495Gonçalves, C., & Alpendurada, M. . (2004). Solid-phase micro-extraction–gas chromatography–(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities. Journal of Chromatography A, 1026(1-2), 239-250. doi:10.1016/j.chroma.2003.10.117Frenich, A. G., Martínez Vidal, J. L., Pablos Espada, M. C., Gil García, M. D., & Arrebola, F. J. (2000). Comparison of gas chromatography with NPD, MS, and tandem MS-MS in the multiresidue analysis of pesticides in environmental waters. Chromatographia, 52(9-10), 614-620. doi:10.1007/bf02789761Fidalgo-Used, N., Montes-Bayón, M., Blanco-González, E., & Sanz-Medel, A. (2005). Determination of organophosphorus pesticides in spiked river water samples using solid phase microextraction coupled to gas chromatography with EI-MS and ICP-MS detection. Journal of Analytical Atomic Spectrometry, 20(9), 876. doi:10.1039/b505170nRavelo-Pérez, L. M., Hernández-Borges, J., & Ángel Rodríguez-Delgado, M. (2008). Multiwalled carbon nanotubes as solid-phase extraction materials for the gas chromatographic determination of organophosphorus pesticides in waters. Journal of Separation Science, 31(20), 3612-3619. doi:10.1002/jssc.200800352López-Blanco, C., Gómez-Álvarez, S., Rey-Garrote, M., Cancho-Grande, B., & Simal-Gándara, J. (2006). Determination of pesticides by solid phase extraction followed by gas chromatography with nitrogen–phosphorous detection in natural water and comparison with solvent drop microextraction. Analytical and Bioanalytical Chemistry, 384(4), 1002-1006. doi:10.1007/s00216-005-0232-1Mothes, S., Popp, P., & Wennrich, R. (2003). Analysis of organophosphorus insecticides in natural waters by use of stir-bar-sorptive extraction then gas chromatography with atomic emission detection. Chromatographia, 57(S1), S249-S252. doi:10.1007/bf02492111Greulich, K., & Alder, L. (2008). Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Analytical and Bioanalytical Chemistry, 391(1), 183-197. doi:10.1007/s00216-008-1935-xGarcía-Ruiz, C., Álvarez-Llamas, G., Puerta, Á., Blanco, E., Sanz-Medel, A., & Marina, M. L. (2005). Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis. Analytica Chimica Acta, 543(1-2), 77-83. doi:10.1016/j.aca.2005.04.027Buonasera, K., D’Orazio, G., Fanali, S., Dugo, P., & Mondello, L. (2009). Separation of organophosphorus pesticides by using nano-liquid chromatography. Journal of Chromatography A, 1216(18), 3970-3976. doi:10.1016/j.chroma.2009.03.005Cháfer-Pericás, C., Herráez-Hernández, R., & Campíns-Falcó, P. (2007). In-tube solid-phase microextraction-capillary liquid chromatography as a solution for the screening analysis of organophosphorus pesticides in untreated environmental water samples. Journal of Chromatography A, 1141(1), 10-21. doi:10.1016/j.chroma.2006.11.105Gámiz-Gracia, L., Garcı́a-Campaña, A. M., Soto-Chinchilla, J. J., Huertas-Pérez, J. F., & González-Casado, A. (2005). Analysis of pesticides by chemiluminescence detection in the liquid phase. TrAC Trends in Analytical Chemistry, 24(11), 927-942. doi:10.1016/j.trac.2005.05.009Lara, F. J., García-Campaña, A. M., & Aaron, J.-J. (2010). Analytical applications of photoinduced chemiluminescence in flow systems—A review. Analytica Chimica Acta, 679(1-2), 17-30. doi:10.1016/j.aca.2010.09.001CATALÁ-ICARDO, M., LÓPEZ-PAZ, J. L., & PEÑA-BÁDENA, A. (2011). FI-photoinduced Chemiluminescence Method for Diuron Determination in Water Samples. Analytical Sciences, 27(3), 291. doi:10.2116/analsci.27.291Meseguer-Lloret, S., Torres-Cartas, S., & Gómez-Benito, M. C. (2010). Flow injection photoinduced chemiluminescence determination of imazalil in water samples. Analytical and Bioanalytical Chemistry, 398(7-8), 3175-3182. doi:10.1007/s00216-010-4227-1López-Paz, J. L., Catalá-Icardo, M., & Antón-Garrido, B. (2009). Determination of diquat by flow injection–chemiluminescence. Analytical and Bioanalytical Chemistry, 394(4), 1073-1079. doi:10.1007/s00216-009-2609-zPérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). Chemiluminescence determination of carbofuran and promecarb by flow injection analysis using two photochemical reactions. The Analyst, 127(11), 1526-1530. doi:10.1039/b207460pHUERTASPEREZ, J., GAMIZGRACIA, L., GARCIACAMPANA, A., GONZALEZCASADO, A., & MARTINEZVIDAL, J. (2005). Chemiluminescence determination of carbofuran at trace levels in lettuce and waters by flow-injection analysis. Talanta, 65(4), 980-985. doi:10.1016/j.talanta.2004.08.058Soto-Chinchilla, J. J., Garcı́a-Campaña, A. M., Gámiz-Gracia, L., Cuadros-Rodrı́guez, L., & Vidal, J. L. M. (2004). Determination of a N-methylcarbamate pesticide in environmental samples based on the application of photodecomposition and peroxyoxalate chemiluminescent detection. Analytica Chimica Acta, 524(1-2), 235-240. doi:10.1016/j.aca.2004.05.084Díaz, A. N., Bracho, V., Algarra, M., & García Sánchez, F. (2008). Chemiluminometric Determination of the Pesticide Pirimicarb by a Flow Injection Analysis Assembly. Analytical Letters, 41(17), 3210-3220. doi:10.1080/00032710802463014Burrows, H. D., Canle L, M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67(2), 71-108. doi:10.1016/s1011-1344(02)00277-4Ingelse, B. A., van Dam, R. C. ., Vreeken, R. J., Mol, H. G. ., & Steijger, O. M. (2001). Determination of polar organophosphorus pesticides in aqueous samples by direct injection using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 918(1), 67-78. doi:10.1016/s0021-9673(01)00660-

    Biospeciation of tungsten in the serum of diabetic and healthy rats treated with the antidiabetic agent sodium tungstate

    Get PDF
    It is known that oral administration of sodium tungstate preserves the pancreatic beta cell function in diabetic rats. Healthy and streptozotocin-induced diabetic rats were treated with sodium tungstate for one, three or six weeks, after which the species of W in serum, were analysed. An increase in serum W with treatment time was observed. After six weeks, the serum W concentration in diabetic rats (70 mg L−1) was about 4.6 times higher than in healthy specimens. This different behaviour was also observed for Cu accumulation, while the Zn pattern follows the contrary. The patterns observed in the retention of Cu and Zn may be attributable to a normalization of glycaemia. The speciation analysis of W was performed using 2D separations, including an immunoaffinity packing and a SEC (Size Exclusion Chromatography) column coupled to an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) for elemental detection. Ultrafiltration data together with SEC-ICP-MS results proved that around 80% of serum W was bound to proteins, the diabetic rats registering a higher W content than their healthy counterparts. Most of the proteinbound W was due to a complex with albumin. An unknown protein with a molecular weight higher tan 100 kDa was also found to bind a small amount of W (about 2%). MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-of-Flight) analysis of the desalted and concentrated chromatographic fractions confirmed albumin as the main protein bound to tungstate in rat serum, while no binding to transferrin (Tf) was detected. The interaction between glutathione and W was also evaluated using standard solutions; however, the formation of complexes was not observed. The stability of the complexes between W and proteins when subjected to more stringent procedures, like those used in proteomic methodologies (denaturing with urea or SDS, boiling, sonication, acid media, reduction with -mercaptoethanol (BME) or DTT (dithiotreitol) and alkylation with iodoacetamide (IAA), was also evaluated. Our results indicate that the stability of the complexes between W and proteins is not too high enough to remain unaltered during protein separation by SDS–PAGE in denaturing and reducing conditions. However, the procedures for in-solution tryptic digestion and for ESI-MS analysis in MeOH/H2O/with 0.1% formic acid could be used for protein identification without large loss of binding between W and proteins

    Simultaneous Nasal Carriage by Methicillin-Resistant and Methicillin Susceptible Staphylococcus aureus of Lineage ST398 in a Live Pig Transporter.

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST)398 is a livestock associated (LA) lineage with zoonotic potential, especially in humans with live pig contact. The objective of this study was to characterize two S. aureus strains of lineage ST398 (one methicillin-resistant (MRSA), one methicillin-susceptible (MSSA)) isolated from the same nasal sample of a patient admitted in the Intensive-Care Unit of a Spanish Hospital, and with previous occupational exposure to live pigs, by whole-genome-sequencing (WGS). The sample was obtained during routine surveillance for MRSA colonization. Purified genomic DNA was sequenced using Illumina HiSeq 2000 and processed using conventional bioinformatics software. The two isolates recovered were both S. aureus t011/ST398 and showed similar resistance-phenotypes, other than methicillin susceptibility. The possession of antibiotic resistance genes was the same, except for the mecA-gene located in SCCmecV in the MRSA isolate. The MSSA isolate harbored remnants of a SCCmec following the deletion of 17342bp from a recombination between two putative primases. Both isolates belonged to the livestock-associated clade as defined by three canonical single-nucleotide-polymorphisms, and neither possessed the human immune evasion cluster genes, chp, scn, or sak. The core genome alignment showed a similarity of 99.6%, and both isolates harbored the same mobile genetic elements. The two nasal ST398 isolates recovered from the patient with previous occupational exposure to pigs appeared to have a livestock origin and could represent different evolutionary steps of animal-human interface lineage. The MSSA strain was formed as a result of the loss of the mecA gene from the livestock-associated-MRSA lineage

    Selective and sensitive chemiluminescence determination of MCPB: flow injection and liquid chromatography

    Full text link
    This paper was published in Applied Spectroscopy and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1177/0003702815620133 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Two new chemiluminescence (CL) methods are described for the determination of the herbicide 4-(4-chloro-o-tolyloxy) butyric acid (MCPB). First, a flow injection chemiluminescence (FI-CL) method is proposed. In this method, MCPB is photodegraded with an ultraviolet (UV) lamp and the photoproducts formed provide a great CL signal when they react with ferricyanide in basic medium. Second, a high-performance liquid chromatography chemiluminescence (HPLC-CL) method is proposed. In this method, before the photodegradation and CL reaction, the MCPB and other phenoxyacid herbicides are separated in a C18 column. The experimental conditions for the FI-CL and HPLC-CL methods are optimized. Both methods present good sensitivity, the detection limits being 0.12 mg L 1 and 0.1 mg L 1 (for FI-CL and HPLC-CL, respectively) when solid phase extraction (SPE) is applied. Intra- and interday relative standard deviations are below 9.9%. The methods have been satisfactorily applied to the analysis of natural water samples. FI-CL method can be employed for the determination of MCPB in simple water samples and for the screening of complex water samples in a fast, economic, and simple way. The HPLC-CL method is more selective, and allows samples that have not been resolved with the FI-CL method to be solved.Meseguer-Lloret, S.; Torres-Cartas, S.; Catalá-Icardo, M.; Gómez Benito, C. (2016). Selective and sensitive chemiluminescence determination of MCPB: flow injection and liquid chromatography. Applied Spectroscopy. 70(2):312-321. doi:10.1177/0003702815620133S312321702Moral, A., Caballo, C., Sicilia, M. D., & Rubio, S. (2012). Highly efficient microextraction of chlorophenoxy acid herbicides in natural waters using a decanoic acid-based nanostructured solvent prior to their quantitation by liquid chromatography–mass spectrometry. Analytica Chimica Acta, 709, 59-65. doi:10.1016/j.aca.2011.10.016Herrero-Hernández, E., Rodríguez-Gonzalo, E., Andrades, M. S., Sánchez-González, S., & Carabias-Martínez, R. (2013). Occurrence of phenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as a selective sorbent. Science of The Total Environment, 454-455, 299-306. doi:10.1016/j.scitotenv.2013.03.029Baggiani, C., Giovannoli, C., Anfossi, L., & Tozzi, C. (2001). Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. Journal of Chromatography A, 938(1-2), 35-44. doi:10.1016/s0021-9673(01)01126-8Wintersteiger, R., Goger, B., & Krautgartner, H. (1999). Quantitation of chlorophenoxy acid herbicides by high-performance liquid chromatography with coulometric detection. Journal of Chromatography A, 846(1-2), 349-357. doi:10.1016/s0021-9673(99)00429-xPeruzzi, M., Bartolucci, G., & Cioni, F. (2000). Determination of phenoxyalkanoic acids and other herbicides at the ng/ml level in water by solid-phase extraction with poly(divinylbenzene-co-N-vinylpyrrolidone) sorbent and high-performance liquid chromatography–diode-array detection. Journal of Chromatography A, 867(1-2), 169-175. doi:10.1016/s0021-9673(99)01141-3Ranz, A., & Lankmayr, E. (2006). Screening and optimization of the derivatization of polar herbicides with trimethylanilinium hydroxide for GC-MS analysis. Journal of Biochemical and Biophysical Methods, 69(1-2), 3-14. doi:10.1016/j.jbbm.2006.02.007Nuhu, A. A., Basheer, C., Alhooshani, K., & Al-Arfaj, A. R. (2012). Determination of phenoxy herbicides in water samples using phase transfer microextraction with simultaneous derivatization followed by GC-MS analysis. Journal of Separation Science, 35(23), 3381-3388. doi:10.1002/jssc.201200218Jiménez, J. J. (2013). Simultaneous liquid–liquid extraction and dispersive solid-phase extraction as a sample preparation method to determine acidic contaminants in river water by gas chromatography/mass spectrometry. Talanta, 116, 678-687. doi:10.1016/j.talanta.2013.07.052EREMIN, S., LAASSIS, B., & AARON, J. (1996). Photochemical-fluorimetric method for the determination of total chlorophenoxyacid herbicides. Talanta, 43(3), 295-301. doi:10.1016/0039-9140(95)01751-8Jafari, M. T., Saraji, M., & Yousefi, S. (2012). Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters. Journal of Chromatography A, 1249, 41-47. doi:10.1016/j.chroma.2012.06.024Tsogas, G. Z., Giokas, D. L., Nikolakopoulos, P. G., Vlessidis, A. G., & Evmiridis, N. P. (2006). Determination of the pesticide carbaryl and its photodegradation kinetics in natural waters by flow injection–direct chemiluminescence detection. Analytica Chimica Acta, 573-574, 354-359. doi:10.1016/j.aca.2005.11.058Albert-García, J. R., & Calatayud, J. M. (2008). Determination of the herbicide benfuresate by its photo-induced chemiluminescence using flow multicommutation methodology. Talanta, 75(3), 717-724. doi:10.1016/j.talanta.2007.12.003Catalá-Icardo, M., López-Paz, J. L., Choves-Barón, C., & Peña-Bádena, A. (2012). Native vs photoinduced chemiluminescence in dimethoate determination. Analytica Chimica Acta, 710, 81-87. doi:10.1016/j.aca.2011.10.043Gómez-Benito, C., Meseguer-Lloret, S., & Torres-Cartas, S. (2013). Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence. International Journal of Environmental Analytical Chemistry, 93(2), 152-165. doi:10.1080/03067319.2012.663755Beale, D. J., Porter, N. A., & Roddick, F. A. (2009). A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection. Talanta, 78(2), 342-347. doi:10.1016/j.talanta.2008.11.033Catalá-Icardo, M., López-Paz, J. L., & Pérez-Plancha, L. M. (2014). Fast Determination of Thiacloprid by Photoinduced Chemiluminescence. Applied Spectroscopy, 68(6), 642-648. doi:10.1366/13-07330Torres-Cartas, S., Gómez-Benito, C., & Meseguer-Lloret, S. (2011). FI on-line chemiluminescence reaction for determination of MCPA in water samples. Analytical and Bioanalytical Chemistry, 402(3), 1289-1296. doi:10.1007/s00216-011-5567-1Catalá-Icardo, M., Lahuerta-Zamora, L., Torres-Cartas, S., & Meseguer-Lloret, S. (2014). Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). Journal of Chromatography A, 1341, 31-40. doi:10.1016/j.chroma.2014.03.024Huertas-Pérez, J. F., & García-Campaña, A. M. (2008). Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Analytica Chimica Acta, 630(2), 194-204. doi:10.1016/j.aca.2008.09.047Orejuela, E., & Silva, M. (2003). Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate-chemiluminescence detection. Journal of Chromatography A, 1007(1-2), 197-201. doi:10.1016/s0021-9673(03)00934-8GALERA, M., GARCIA, M., & VALVERDE, R. (2008). Determination of photoirradiated high polar benzoylureas in tomato by HPLC with luminol chemiluminescence detection. Talanta, 76(4), 815-823. doi:10.1016/j.talanta.2008.04.052Rosales-Conrado, N., León-González, M. E., Pérez-Arribas, L. V., & Polo-Díez, L. M. (2005). Effect of temperature on the separation of chlorophenoxy acids and carbamates by capillary high-performance liquid chromatography and UV (or diode array) detection. Journal of Chromatography A, 1081(1), 114-121. doi:10.1016/j.chroma.2004.12.083Geerdink, R. B., van Tol-Wildenburg, S., Niessen, W. M. A., & Brinkman, U. A. T. (1997). Determination of Phenoxy Acid Herbicides From Aqueous Samples by Improved Clean-up on Polymeric Pre-columns at High pH. The Analyst, 122(9), 889-894. doi:10.1039/a702338

    Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

    Full text link
    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (> 120 re-uses). The proposed method allowed the detection of 0.05 mu g L-1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).This work was supported by project CTQ2014-52765-R (Ministerio de Economia y Competitividad (MINECO) of Spain and Fondo Europeo de Desarrollo Regional (FEDER)) and PROMETEO/2016/145 (Conselleria de Educacion, Investigacion, Cultura y Deporte, Generalitat Valenciana, Spain).Catalá-Icardo, M.; Gómez Benito, C.; Simo Alfonso, E.; Herrero Martinez, JM. (2017). Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Analytical and Bioanalytical Chemistry. 409(1):243-250. https://doi.org/10.1007/s00216-016-9993-yS2432504091Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31.Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62.Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53.U.S. Environmental Protection Agency (EPA). R.E.D. facts. Prevention, pesticides and toxic substances (4508C) Chlorothalonil; 1999. EPA-738-F-99-008.Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston Jr DB. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Prot. 2007;26:83–8.Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem. 2004;52:6361–72.Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128:236–43.Leandro CC, Hancock O, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. J Chromatogr A. 2007;1166:152–62.Ono Y, Yamagami T, Nishina T, Tobino T. Pesticide multiresidue analysis of 303 compounds using supercritical fluid extraction. Anal Sci. 2006;22:1473–6.Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165:200–12.Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF, et al. A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc. 2014;25:1520–7.Słowik-Borowiec M. Validation of a QuEChERS-based gas chromatographic method for multiresidue pesticide analysis in fresh peppermint including studies of matrix effects. Food Anal Methods. 2015;8:1413–24.El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M, et al. Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem. 2013;93:499–510.Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, et al. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. 2015;1381:37–47.Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213.Żwir-Ferenc A, Biziuk M. Solid phase extraction technique—trends, opportunities and applications. Pol J Environ Stud. 2006;15:677–90.Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21.Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767–81.Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res. 2016;7:9–16.Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.Tong S, Liu S, Wang H, Jia Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatographia. 2014;77:5–14.Lv Y, Maya Alejandro F, Fréchet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121–8.Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun. 2010;46:2109–11.Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control. 2014;46:108–14.Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43.Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors Actuators B. 2015;220:216–21.Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst. 2009;134:80–6.Zhao L, Zhao F, Zeng B. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24.Pan Y, Wang X, Zhang H, Kang Y, Wu T, Du Y. Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection. Anal Methods. 2015;7:1349–57.Zhou X, Zhou F, Liu H, Yang L, Liu J. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst. 2013;138:5832–8.Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–73.Lee C, Bae SJ, Gong M, Kim K, Joo S. Surface-enhanced Raman scattering of 4,4′-dicyanobiphenyl on gold and silver nanoparticle surfaces. J Raman Spectrosc. 2002;33:429–33.International Conference on Harmonization (ICH guidelines). Validation of analytical procedures: text and methodology. ICH-Q2, Geneva; 1996.Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330/32. 1998.Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, et al. Regulatory limits for pesticide residues in water (IUPAC technical Report). Pure Appl Chem. 2003;75:1123–55

    Development and validation of the scale of psychological abuse in intimate partner violence (EAPA-P).

    Get PDF
    Background: In the context of intimate partner violence, psychological abuse (PA) has progressively gained scientific relevance. Even so, a greater effort is needed to define and evaluate psychological intimate partner abuse. A new exhaustive and operative taxonomy of PA strategies leads to the contribution of a new evaluation instrument. Method: Participants were 101 women between 24 and 82 years old, who were abused by their partners and attended to in different municipal Catalan services, specialized in the topic. Results: The analyses have shown the suitability of a 19-item instrument divided into two factors: (1) direct PA strategies and (2) indirect PA strategies. The former includes strategies that affect the emotional, cognitive and behavioral dimension of the victim. The latter includes items that measure the amount of control and domination over the victim's context. This scale has adequate psychometric properties in terms of score reliability and the validity of the relationship with other women's health variables. Conclusions: The EAPA-P, created based on a new definition and taxonomy of the forms of PA, is presented as a valid instrument to detect and measure intimate partner P

    Química: prácticas de laboratorio

    Full text link
    El objetivo de este texto es ofrecer un material completo que permita al lector comprender y desarrollar las técnicas más usuales en el laboratorio de Química. De esta manera, está especialmente indicado para el estudiante universitario de los primeros cursos de estudios científicos. Cada capítulo comienza con una introducción al marco teórico que se va a tratar, que desemboca en la resolución de un caso práctico en el laboratorio. Junto con ésto, al finalizar cada capítulo se plantea al lector una serie de cuestiones que le permiten constatar tanto si es capaz de extraer conclusiones a partir de los experimentos desarrollados, como si ha comprendido el porqué de los pasos seguidos.Torres Cartas, S.; Meseguer Lloret, S.; Catalá Icardo, M.; Gómez Benito, C. (2022). Química: prácticas de laboratorio. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/185922EDITORIA

    Procesos colaborativos de crítica y reflexión para la coevaluación de proyectos artísticos de alumnos de Bellas Artes mediante el uso de las tecnologías móviles [ Collaborative processes for criticism and reflection for the evaluation of students' artistic projects of Fine Arts through the use of mobile technologies]

    Get PDF
    Este proyecto ha pretendido hacer partícipe a los propios alumnos de la coevaluación de proyectos artísticos y teóricos y en distintos aspectos de la enseñanza de las Bellas Artes. En estas enseñanzas se plantea una especificidad muy concreta, puesto que el grado de experimentalidad de los proyectos finales que presentan los propios alumnos y que se evalúan en las distintas asignaturas requiere de una constante labor de tutela y seguimiento por parte del docente responsable en cada una de ellas. La coevaluación, recogida en ocasiones anteriores en papel y transcrita a mano por los docentes, se ha llevado a cabo ahora mediante un Sistema de Respuesta en el Aula que garantiza el anonimato y la inmediatez en la evaluación. De esta forma el alumno, después de realizar la exposición de su proyecto, tiene una idea aproximada de lo que su trabajo sugiere y de lo que puede incluir, variar o reflexionar y, a su vez, el resto de sus compañeros adquieren habilidades y competencias en valoraciones y críticas de proyectos artísticos contemporáneos. [This project has sought to involve the students themselves in the co-evaluation of artistic and theoretical projects and in different aspects of the teaching Fine Arts. In this context arises very specific issues, due to the degree of experimentalism of the final projects presented by the students and that are assessed in the different subjects requires constant work of supervision and monitoring by the responsible teacher in each of them. Coevaluation, previously collected on paper and transcribed manually by teachers, has been carried out by using a Response System in the Classroom that guarantees anonymity and immediacy in the evaluation so, by this way, the student after making his presentation could have a rough idea of what its work suggests and what should be included, varied or reflected on. Also, the rest of his peers acquire by this way skills and competencies in evaluating and criticism contemporary artistic projects.
    corecore