866 research outputs found

    Corrective Primary Impression Technique

    Get PDF
    The article describes a simple, quick and corrective technique for making the preliminary impression. It records the extensions better as compared to the impressions made using only impression compound. This technique is accurate and gives properly extended custom tray. Any deficiencies seen in the compound primary impression are corrected using this technique hence, this technique is called as a “corrective primary impression technique”

    Immunoseq: the identification of functionally relevant variants through targeted capture and sequencing of active regulatory regions in human immune cells

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: The observation that the genetic variants identified in genome-wide association studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory elements suggests that altered gene expression underlies the development of many complex traits. In order to efficiently make a comprehensive assessment of the impact of non-coding genetic variation in immune related diseases we emulated the whole-exome sequencing paradigm and developed a custom capture panel for the known DNase I hypersensitive site (DHS) in immune cells - "Immunoseq". RESULTS\textbf{RESULTS}: We performed Immunoseq in 30 healthy individuals where we had existing transcriptome data from T cells. We identified a large number of novel non-coding variants in these samples. Relying on allele specific expression measurements, we also showed that our selected capture regions are enriched for functional variants that have an impact on differential allelic gene expression. The results from a replication set with 180 samples confirmed our observations. CONCLUSIONS\textbf{CONCLUSIONS}: We show that Immunoseq is a powerful approach to detect novel rare variants in regulatory regions. We also demonstrate that these novel variants have a potential functional role in immune cells.This work was supported by grants from the Canadian Institute of Health Research (CIHR), the UK Medical Research Council (G1100125), the Swedish Research Council (DO283001) and Knut and Alice Wallenberg Foundation (KAW). We also acknowledge the use of subjects from the Cambridge BioResource and the support of the Cambridge NIHR Biomedical Research Centre. AM was supported by the Fond de Recherche Santé Québec Doctoral training award. TP and CL holds a Canada Research Chair

    Insulin resistance is related to cognitive decline but not change in CSF biomarkers of Alzheimer's disease in non-demented adults

    Get PDF
    Introduction: We investigated whether insulin resistance (IR) was associated with longitudinal age-related change in cognition and biomarkers of Alzheimer's disease (AD) pathology and neurodegeneration in middle-aged and older adults who were non-demented at baseline. Methods: IR was measured with homeostatic model assessment of insulin resistance (HOMA2-IR). Core AD-related cerebrospinal fluid (CSF) biomarkers and cognition were assessed, respectively, on n = 212 (1 to 5 visits) and n = 1299 (1 to 6 visits). Linear mixed models tested whether HOMA2-IR moderated age-related change in CSF biomarkers and cognition. Linear regressions tested whether HOMA2-IR x apolipoprotein E Δ4 allele (APOE Δ4) carrier status predicted amyloid beta [AÎČ] chronicity (estimated duration of amyloid positron emission tomography [PET] positivity) (n = 253). Results: Higher HOMA2-IR was associated with greater cognitive decline but not with changes in CSF biomarkers. HOMA2-IR x APOE4 was not related to AÎČ chronicity but was significantly associated with CSF phosphorylated tau (P-tau)181/AÎČ42 level. Discussion: In non-demented adults IR may not be directly associated with age-related change in AD biomarkers. Additional research is needed to determine mechanisms linking IR to cognitive decline

    Large-scale proteome and metabolome analysis of CSF implicates altered glucose and carbon metabolism and succinylcarnitine in Alzheimer's disease

    Get PDF
    INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10−5) and 636 significant protein-biomarker associations (P < 6.07 × 10−6). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine–phosphorylated tau association

    Persistent Intersection Homology for the Analysis of Discrete Data

    Full text link
    Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample---not necessarily a uniform one---of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with different dimensions. Algebraic topology typically analyzes such problems using intersection homology, an extension of homology that is capable of handling configurations with singularities. In this paper, we describe how the persistent variant of intersection homology can be used to assist data analysis in visualization. We point out potential pitfalls in approximating data sets with singularities and give strategies for resolving them.Comment: Topology-based Methods in Visualization 201

    Influence of microenvironment on engraftment of transplanted ÎČ-cells

    Get PDF
    Pancreatic islet transplantation into the liver provides a possibility to treat selected patients with brittle type 1 diabetes mellitus. However, massive early ÎČ-cell death increases the number of islets needed to restore glucose homeostasis. Moreover, late dysfunction and death contribute to the poor long-term results of islet transplantation on insulin independence. Studies in recent years have identified early and late challenges for transplanted pancreatic islets, including an instant blood-mediated inflammatory reaction when exposing human islets to the blood microenvironment in the portal vein and the low oxygenated milieu of islets transplanted into the liver. Poor revascularization of remaining intact islets combined with severe changes in the gene expression of islets transplanted into the liver contributes to late dysfunction. Strategies to overcome these hurdles have been developed, and some of these interventions are now even tested in clinical trials providing a hope to improve results in clinical islet transplantation. In parallel, experimental and clinical studies have, based on the identified problems with the liver site, evaluated the possibility of change of implantation organ in order to improve the results. Site-specific differences clearly exist in the engraftment of transplanted islets, and a more thorough characterization of alternative locations is needed. New strategies with modifications of islet microenvironment with cells and growth factors adhered to the islet surface or in a surrounding matrix could be designed to intervene with site-specific hurdles and provide possibilities to improve future results of islet transplantation
    • 

    corecore