51 research outputs found

    Perfluoroalkyl substances in circum-ArcticRangifer: caribou and reindeer

    Get PDF
    Livers of caribou and reindeer (Rangifer tarandus) from Canada (n = 146), Greenland (n = 30), Svalbard (n = 7), and Sweden (n = 60) were analyzed for concentrations of eight perfluoroalkyl carboxylic acids and four perfluoroalkane sulfonic acids. In Canadian caribou, PFNA (range < 0.01–7.4 ng/g wet weight, ww) and PFUnDA (<0.01–5.6 ng/g ww) dominated, whereas PFOS predominated in samples from South Greenland, Svalbard, and Sweden, although the highest concentrations were found in caribou from Southwest Greenland (up to 28 ng/g ww). We found the highest median concentrations of all PFAS except PFHxS in Akia-Maniitsoq caribou (Southwest Greenland, PFOS 7.2–19 ng/g ww, median 15 ng/g ww). The highest concentrations of ÎŁPFAS were also found in Akia-Maniitoq caribou (101 ng/g ww) followed by the nearby Kangerlussuaq caribou (45 ng/g ww), where the largest airport in Greenland is situated, along with a former military base. Decreasing trends in concentrations were seen for PFOS in the one Canadian and three Swedish populations. Furthermore, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed decreasing trends in Canada’s Porcupine caribou between 2005 and 2016. In Sweden, PFHxS increased in the reindeer from Norrbotten between 2003 and 2011. The reindeer from VĂ€sterbotten had higher concentrations of PFNA and lower concentrations of PFHxS in 2010 compared to 2002. Finally, we observed higher concentrations in 2010 compared to 2002 (albeit statistically insignificant) for PFHxS in JĂ€mtland, while PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed no difference at all.publishedVersio

    The association between selected mid-trimester amniotic fluid candidate proteins and spontaneous preterm delivery

    Get PDF
    Objective: The aim of this study was to explore inflammatory response and identify early potential biomarkers in mid-trimester amniotic fluid associated with subsequent spontaneous preterm delivery (PTD). Methods: A cohort study was performed at Sahlgrenska University Hospital/ 6stra, Gothenburg, Sweden, between 2008 and 2010. Amniotic fluid was collected from consecutive women undergoing mid-trimester transabdominal genetic amniocentesis at 14–19 gestational weeks. Clinical data and delivery outcome variables were obtained from medical records. The analysis included 19 women with spontaneous PTD and 118 women who delivered at term. A panel of 26 candidate proteins was analyzed using Luminex xMAP technology. Candidate protein concentrations were analyzed with ANCOVA and adjusted for plate effects. Results: The median gestational age at delivery was 35 + 3 weeks in women with spontaneous PTD and 40 + 0 weeks in women who delivered at term. Nominally significantly lower amniotic fluid levels of adiponectin (PTD: median 130,695 pg/mL (IQR 71,852–199,414) vs term: median 185,329 pg/mL (IQR (135,815–290,532)), granulocyte-macrophage colony stimulating factor (PTD: median 137 pg/mL (IQR 74–156) vs term: median 176 pg/mL (IQR 111–262)), and macrophage migration inhibitory factor (PTD: median 3025 pg/mL (IQR 1885–3891) vs term: median 3400 pg/mL (IQR 2181–5231)) were observed in the spontaneous PTD group, compared with the term delivery group, after adjusting for plate effects. No significant differences remained after Bonferroni correction for multiple comparisons. Conclusions: Our results are important in the process of determining the etiology behind spontaneous PTD but due to the non-significance after Bonferroni correction, the results should be interpreted with caution. Further analyses of larger sample size will be required to determine whether these results are cogent and to examine whether microbial invasion of the amniotic cavity or intra-amniotic inflammation occurs in asymptomatic women in the mid-trimester with subsequent spontaneous PTD

    Neuro-Specific and Immuno-Inflammatory Biomarkers in Umbilical Cord Blood in Neonatal Hypoxic-Ischemic Encephalopathy

    Get PDF
    OBJECTIVES: The aim of the study was to evaluate neuronal injury and immuno-inflammatory biomarkers in umbilical cord blood (UCB) at birth, in cases with perinatal asphyxia with or without hypoxic-ischemic encephalopathy (HIE), compared with healthy controls and to assess their ability to predict HIE. STUDY DESIGN: In this case-control study, term infants with perinatal asphyxia were recruited at birth. UCB was stored at delivery for batch analysis. HIE was diagnosed by clinical Sarnat staging at 24 h. Glial fibrillary acidic protein (GFAP), the neuronal biomarkers tau and neurofilament light protein (NFL), and a panel of cytokines were analyzed in a total of 150 term neonates: 50 with HIE, 50 with asphyxia without HIE (PA), and 50 controls. GFAP, tau, and NFL concentrations were measured using ultrasensitive single-molecule array (Simoa) assays, and a cytokine screening panel was applied to analyze the immuno-inflammatory and infectious markers. RESULTS: GFAP, tau, NFL, and several cytokines were significantly higher in newborns with moderate and severe HIE compared to a control group and provided moderate prediction of HIE II/III (AUC: 0.681-0.827). Furthermore, the levels of GFAP, tau, interleukin-6 (IL-6), and interleukin-8 (IL-8) were higher in HIE II/III cases compared with cases with PA/HIE I. IL-6 was also higher in HIE II/III compared with HIE I cases. CONCLUSIONS: Biomarkers of brain injury and inflammation were increased in umbilical blood in cases with asphyxia. Several biomarkers were higher in HIE II/III versus those with no HIE or HIE I, suggesting that they could assist in the prediction of HIE II/III

    Protein Concentrations of Thrombospondin-1, MIP-1ÎČ, and S100A8 Suggest the Reflection of a Pregnancy Clock in Mid-Trimester Amniotic Fluid

    Get PDF
    The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) spontaneous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amniocentesis, was performed in Gothenburg, Sweden, 2008–2016 (n = 1072). A panel of 27 proteins related to inflammation was analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259\ua0days or longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear regression models were performed to analyze associations between protein concentrations and gestational duration in women with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1ÎČ, S100A8, and thrombospondin-1 were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1, MIP-1ÎČ, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm this

    Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury

    Full text link
    Cyclophilin D (CypD), a regulator of the mitochondrial membrane permeability transition pore (PTP), enhances Ca(2+)-induced mitochondrial permeabilization and cell death in the brain. However, the role of CypD in hypoxic-ischemic (HI) brain injury at different developmental ages is unknown. At postnatal day (P) 9 or P60, littermates of CypD-deficient [knock-out (KO)], wild-type (WT), and heterozygous mice were subjected to HI, and brain injury was evaluated 7 d after HI. CypD deficiency resulted in a significant reduction of HI brain injury at P60 but worsened injury at P9. After HI, caspase-dependent and -independent cell death pathways were more induced in P9 CypD KO mice than in WT controls, and apoptotic activation was minimal at P60. The PTP had a considerably higher induction threshold and lower sensitivity to cyclosporin A in neonatal versus adult mice. On the contrary, Bax inhibition markedly reduced caspase activation and brain injury in immature mice but was ineffective in the adult brain. Our findings suggest that CypD/PTP is critical for the development of brain injury in the adult, whereas Bax-dependent mechanisms prevail in the immature brain. The role of CypD in HI shifts from a predominantly prosurvival protein in the immature to a cell death mediator in the adult brain

    Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables

    Get PDF
    Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA(1c), and homoeostatic model assessment 2 estimates of beta-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.Peer reviewe

    Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy

    Get PDF
    Hypoxic-ischaemic encephalopathy remains a global health burden. Despite medical advances and treatment with therapeutic hypothermia, over 50% of cooled infants are not protected and still develop lifelong neurodisabilities, including cerebral palsy. Furthermore, hypothermia is not used in preterm cases or low resource settings. Alternatives or adjunct therapies are urgently needed. Exendin-4 is a drug used to treat type 2 diabetes mellitus that has also demonstrated neuroprotective properties, and is currently being tested in clinical trials for Alzheimer’s and Parkinson’s diseases. Therefore, we hypothesized a neuroprotective effect for exendin-4 in neonatal neurodisorders, particularly in the treatment of neonatal hypoxic-ischaemic encephalopathy. Initially, we confirmed that the glucagon like peptide 1 receptor (GLP1R) was expressed in the human neonatal brain and in murine neurons at postnatal Day 7 (human equivalent late preterm) and postnatal Day 10 (term). Using a well characterized mouse model of neonatal hypoxic-ischaemic brain injury, we investigated the potential neuroprotective effect of exendin-4 in both postnatal Day 7 and 10 mice. An optimal exendin-4 treatment dosing regimen was identified, where four high doses (0.5 ”g/g) starting at 0 h, then at 12 h, 24 h and 36 h after postnatal Day 7 hypoxic-ischaemic insult resulted in significant brain neuroprotection. Furthermore, neuroprotection was sustained even when treatment using exendin-4 was delayed by 2 h post hypoxic-ischaemic brain injury. This protective effect was observed in various histopathological markers: tissue infarction, cell death, astrogliosis, microglial and endothelial activation. Blood glucose levels were not altered by high dose exendin-4 administration when compared to controls. Exendin-4 administration did not result in adverse organ histopathology (haematoxylin and eosin) or inflammation (CD68). Despite initial reduced weight gain, animals restored weight gain following end of treatment. Overall high dose exendin-4 administration was well tolerated. To mimic the clinical scenario, postnatal Day 10 mice underwent exendin-4 and therapeutic hypothermia treatment, either alone or in combination, and brain tissue loss was assessed after 1 week. Exendin-4 treatment resulted in significant neuroprotection alone, and enhanced the cerebroprotective effect of therapeutic hypothermia. In summary, the safety and tolerance of high dose exendin-4 administrations, combined with its neuroprotective effect alone or in conjunction with clinically relevant hypothermia make the repurposing of exendin-4 for the treatment of neonatal hypoxic-ischaemic encephalopathy particularly promising

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the ÎŽ13C and ÎŽ15N values for animal references from VĂ€sterĂ„s. This research (BĂ€ckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor

    Get PDF
    Brain protection of the newborn remains a challenging priority and represents a totally unmet medical need. Pharmacological inhibition of caspases appears as a promising strategy for neuroprotection. In a translational perspective, we have developed a pentapeptide-based group II caspase inhibitor, TRP601/ORPHA133563, which reaches the brain, and inhibits caspases activation, mitochondrial release of cytochrome c, and apoptosis in vivo. Single administration of TRP601 protects newborn rodent brain against excitotoxicity, hypoxia–ischemia, and perinatal arterial stroke with a 6-h therapeutic time window, and has no adverse effects on physiological parameters. Safety pharmacology investigations, and toxicology studies in rodent and canine neonates, suggest that TRP601 is a lead compound for further drug development to treat ischemic brain damage in human newborns
    • 

    corecore