40 research outputs found

    Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

    Get PDF
    Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Photobehaviour of methyl-pyridinium and quinolinium iodide derivatives, free and complexed with DNA. A case of bisintercalation.

    No full text
    Excited state dynamics of four azinium salts were studied in buffered water and in the presence of salmon testes DNA. Complexation with DNA changes the photobehaviour of the free ligands lowering the photoreactivity and emission in favor of internal conversion. The interaction of these four dyes with DNA was studied with different techniques with the aim to establish the affinity and the type of binding between the ligands and DNA. The results from spectrophotometric and fluorimetric titrations provided evidence of a strong interaction between the azinium salts and the polynucleotide, with a binding constant of about 10(6) M(-1), making them interesting for therapeutical applications. Dichroic measurements allowed us to determine the possible modes of binding for each complex. Short living excited states of the free dyes were detected and characterized by ultrafast absorption spectroscopy. A further decrease of transient lifetimes was observed upon interaction with DNA. The bicationic pyridinium iodide was found to act as a bisintercalative agent, potentially increasing the cytotoxicity with low dose and less collateral effects

    Photochemistry and DNA-affinity of some pyrimidine-substituted styryl-azinium iodides

    No full text
    The relaxation properties of the excited states of three iodides of trans-1,2-diarylethene analogues (where one aryl group is a methylpyridinium, methylquinolinium or dimethylimidazolium group and the other one is a phenyl ring para-substituted by a pyrimidine ring) have been investigated in buffered (pH = 7) aqueous solution. As found in previous works for several analogues, these quaternized salts undergo efficient trans\u2192cis photoisomerization while the yield of the radiative deactivation is very small at room temperature. The solvent effect on the spectral behaviour indicates the occurrence of intramolecular charge transfer which can induce interesting non-linear optical properties. The results of a study of the interactions of these salts with DNA, which might affect the cell metabolism, showed a relatively modest binding affinity for the pyridinium and imidazolium salts and a more substantial affinity for the quinolinium analogue. The formation of ligand-DNA complexes affects only slightly the radiative relaxation yield while leading to a relevant reduction of the isomerization yield. Measurements of the linear dichroism behaviour of the three compounds and comparison with three analogues bearing furan or thienyl groups, which have been found to display different affinity with DNA in previous works, gave interesting information on the nature of the ligand-DNA binding of these compounds

    Análise da respiração mitocondrial em tecido cerebral de gato após isquemia e reperfusão Analysis of mitochondrial respiration in brain cerebral tissue of cats after ischemia and reperfusion

    No full text
    INTRODUÇÃO: A isquemia cerebral é uma doença freqüente e de difícil tratamento médico. De particular interesse neurocirúrgico são as situações de vasoespasmo após hemorragia subaracnóidea, de oclusão temporária de vasos nas neurocirurgias e de tromboses de artérias intracranianas. A lesão cerebral resultante da isquemia depende da sua duração e pode ser agravada pela reperfusão do território isquêmico. Vários estudos clínicos e experimentais têm sido realizados para melhor entender esses fenômenos. OBJETIVO: Este trabalho visou a avaliação precoce dos efeitos da isquemia focal seguida da reperfusão no cérebro de gatos. MÉTODOS: A isquemia cerebral foi provocada por clipagem temporária da artéria cerebral média por tempos determinados com reperfusão durante 10 minutos, e avaliação foi efetuada através da análise da respiração mitocondrial no tecido isquemiado. Resultados - Houve redução significativa no consumo de O2 nas amostras de tecido cerebral isquemiado por 60 minutos, seguidos de 10 minutos de reperfusão, quando comparadas ao tecido cerebral contralateral (não isquemiado). CONCLUSÕES: Com base nos resultados obtidos, pode-se concluir que o tempo de duração da isquemia foi um fator determinante na alteração da respiração mitocondrial de gatos submetidos à isquemia e reperfusão de curta duração (alterações significativas apenas após 60 minutos de isquemia seguidos de 10 de reperfusão).<br>OBJECTIVE: Brain ischemia is considered a disease difficult to be treated. Despite many other clinical situations, of particular interest for neurosurgery is its occurrence in cerebral vasoespam following subarachnoid hemorrhage, in temporary occlusion of intracranial vessels during neurosurgeries and, in intracranial arterial thrombosis. The cerebral lesion caused by isquemia is time-related and it can aggravated by the reperfusion of the ischemic site. Many clinical and experimental studies have been perfomed aiming the better understanding of these phenomena. This study aimed to analyse the precocious effects of focal isquemia and reperfusion uppon the brain of cats. METHODS: Focal brain ischemia was performed by temporary clipping of the middle cerebral artery for determined times followed by reperfusion during 10 minutes. The effects of isquemia were assessed through mitochondrial respiration analysis in the ischemic tissue. RESULTS: The results showed a significant decrease in O2 consumption in samples of brain tissue submitted to 60 minutes of ischemia and 10 minutes of reperfusion when compared with not ischemic brain tissue, indicating compromising of the mitocondrial function. CONCLUSION: Based on the results we can conclude that time of ischemia was a determinant factor in the mitochondrial respiration alterations in brain tissue of cats submitted to ischemia and reperfusion of short duration (significant alterations observed only after 60 minutes of ischemia followed by 10 minutes of reperfusion)
    corecore