13,616 research outputs found

    Magnetic defects promote ferromagnetism in Zn1-xCoxO

    Full text link
    Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p- or n-type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO. The electronic structures of Co substituted for Zn in ZnO, Zn and O vacancies, substituted N and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34 eV for bulk ZnO, close to the experimental value of 3.47 eV. Occupied minority spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction band minimum. Majority spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy and interstitial Zn are deep and shallow donors, respectively. The Zn vacancy is a deep acceptor and the acceptor level for substituted N is at mid gap. The possibility that p- or n-type dopants promote exchange coupling of Co ions was investigated by computing total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N or interstitial Zn in various charge states. The neutral N defect and the singly-positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range.Comment: 9 pages, 11 figure

    Hamiltonian Oracles

    Full text link
    Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.Comment: 16 pages, REVTeX 4 (minor corrections in v2

    Wormholes in spacetimes with cosmological horizons

    Get PDF
    A generalisation of the asymptotic wormhole boundary condition for the case of spacetimes with a cosmological horizon is proposed. In particular, we consider de Sitter spacetime with small cosmological constant. The wave functions selected by this proposal are exponentially damped in WKB approximation when the scale factor is large but still much smaller than the horizon size. In addition, they only include outgoing gravitational modes in the region beyond the horizon. We argue that these wave functions represent quantum wormholes and compute the local effective interactions induced by them in low-energy field theory. These effective interactions differ from those for flat spacetime in terms that explicitly depend on the cosmological constant.Comment: 10 pages, LaTeX 2.O9, no figure

    Fundamental Limits of Classical and Quantum Imaging

    Full text link
    Quantum imaging promises increased imaging performance over classical protocols. However, there are a number of aspects of quantum imaging that are not well understood. In particular, it has so far been unknown how to compare classical and quantum imaging procedures. Here, we consider classical and quantum imaging in a single theoretical framework and present general fundamental limits on the resolution and the deposition rate for classical and quantum imaging. The resolution can be estimated from the image itself. We present a utility function that allows us to compare imaging protocols in a wide range of applications.Comment: 4 pages, 3 figures; accepted for Physical Review Letters, with updated title and fixed typo

    Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    Background and Objectives: Physical activity is associated with lower cardiovascular and all-cause mortality. However, the effects of different exercise modalities on arterial stiffness are currently unclear. Our objectives were to investigate the effects of exercise modalities (aerobic, resistance or combined) on pulse wave velocity (PWV) and augmentation index (AIx), and to determine whether the effects on these indices differed according to the participants' or exercise characteristics. Methods: We searched the Medline, Embase and Cochrane Library databases from inception until April 2014 for randomized controlled trials lasting ≥4 weeks investigating the effects of exercise modalities on PWV and AIx in adults aged ≥18 years. Results: Forty-two studies (1627 participants) were included in this analysis. Aerobic exercise improved both PWV (WMD: −0.63 m/s, 95% CI: −0.90, −0.35) and AIx (WMD:−2.63%, 95% CI: −5.25 to −0.02) significantly. Aerobic exercise training showed significantly greater reduction in brachial-ankle (WMD: −1.01 m/s, 95% CI: −1.57, −0.44) than in carotid-femoral (WMD: -0.39 m/s, 95% CI: −0.52, −0.27) PWV. Higher aerobic exercise intensity was associated with larger reductions in AIx (β: −1.55%, CI −3.09, 0.0001). In addition, aerobic exercise had a significantly larger effect in reducing PWV (WMD:−1.0 m/s, 95% CI: −1.43, −0.57) in participants with stiffer arteries (PWV ≥8 m/s). Resistance exercise had no effect on PWV and AIx. There was no significant effect of combined exercise on PWV and AIx. Conclusions: We conclude that aerobic exercise improved arterial stiffness significantly and that the effect was enhanced with higher aerobic exercise intensity and in participants with greater arterial stiffness at baseline. Trial Registration PROSPERO: Database registration: CRD42014009744,

    Variations on the Theme of Journe's Lemma

    Get PDF
    Journe's Lemma is a critical component of many questions related to the product BMO{BMO} theory of S.-Y. Chang and R. Fefferman. This article presents several different variants of the Lemma, some known, some implicit in the literature, and some new.Comment: 27 pages ; 17 references; To appear in Houston Journal of Mathematic

    On Cr−C^r-closing for flows on 2-manifolds

    Full text link
    For some full measure subset B of the set of iet's (i.e. interval exchange transformations) the following is satisfied: Let X be a CrC^r, 1≤r≤∞1\le r\le \infty, vector field, with finitely many singularities, on a compact orientable surface M. Given a nontrivial recurrent point p∈Mp\in M of X, the holonomy map around p is semi-conjugate to an iet E:[0,1)→[0,1).E :[0,1) \to [0,1). If E∈BE\in B then there exists a CrC^r vector field Y, arbitrarily close to X, in the Cr−C^r-topology, such that Y has a closed trajectory passing through p.Comment: 7 pages, 1 figur

    Detection of a Moving Rigid Solid in a Perfect Fluid

    Get PDF
    In this paper, we consider a moving rigid solid immersed in a potential fluid. The fluid-solid system fills the whole two dimensional space and the fluid is assumed to be at rest at infinity. Our aim is to study the inverse problem, initially introduced in [3], that consists in recovering the position and the velocity of the solid assuming that the potential function is known at a given time. We show that this problem is in general ill-posed by providing counterexamples for which the same potential corresponds to different positions and velocities of a same solid. However, it is also possible to find solids having a specific shape, like ellipses for instance, for which the problem of detection admits a unique solution. Using complex analysis, we prove that the well-posedness of the inverse problem is equivalent to the solvability of an infinite set of nonlinear equations. This result allows us to show that when the solid enjoys some symmetry properties, it can be partially detected. Besides, for any solid, the velocity can always be recovered when both the potential function and the position are supposed to be known. Finally, we prove that by performing continuous measurements of the fluid potential over a time interval, we can always track the position of the solid.Comment: 19 pages, 14 figure

    Testing the Color Charge and Mass Dependence of Parton Energy Loss with Heavy-to-light Ratios at RHIC and LHC

    Full text link
    The ratio of nuclear modification factors of high-pT heavy-flavored mesons to light-flavored hadrons (``heavy-to-light ratio'') in nucleus-nucleus collisions tests the partonic mechanism expected to underlie jet quenching. Heavy-to-light ratios are mainly sensitive to the mass and color-charge dependences of medium-induced parton energy loss. Here, we assess the potential for identifying these two effects in D and B meson production at RHIC and at the LHC. To this end, we supplement the perturbative QCD factorized formalism for leading hadron production with radiative parton energy loss. For D meson spectra at high but experimentally accessible transverse momentum (10 < pT < 20 GeV) in Pb-Pb collisions at the LHC, we find that charm quarks behave essentially like light quarks. However, since light-flavored hadron yields are dominated by gluon parents, the heavy-to-light ratio of D mesons is a sensitive probe of the color charge dependence of parton energy loss. In contrast, due to the larger b quark mass, the medium modification of B mesons in the same kinematical regime provides a sensitive test of the mass dependence of parton energy loss. At RHIC energies, the strategies for identifying and disentangling the color charge and mass dependence of parton energy loss are more involved because of the smaller kinematical range accessible. We argue that at RHIC, the kinematical regime best suited for such an analysis of D mesons is 7 < pT < 12 GeV, whereas the study of lower transverse momenta is further complicated due to the known dominant contribution of additional, particle species dependent, non-perturbative effects.Comment: 21 pages RevTex, 9 Figure

    Obtaining pressure versus concentration phase diagrams in spin systems from Monte Carlo simulations

    Full text link
    We propose an efficient procedure for determining phase diagrams of systems that are described by spin models. It consists of combining cluster algorithms with the method proposed by Sauerwein and de Oliveira where the grand canonical potential is obtained directly from the Monte Carlo simulation, without the necessity of performing numerical integrations. The cluster algorithm presented in this paper eliminates metastability in first order phase transitions allowing us to locate precisely the first-order transitions lines. We also produce a different technique for calculating the thermodynamic limit of quantities such as the magnetization whose infinite volume limit is not straightforward in first order phase transitions. As an application, we study the Andelman model for Langmuir monolayers made of chiral molecules that is equivalent to the Blume-Emery-Griffiths spin-1 model. We have obtained the phase diagrams in the case where the intermolecular forces favor interactions between enantiomers of the same type (homochiral interactions). In particular, we have determined diagrams in the surface pressure versus concentration plane which are more relevant from the experimental point of view and less usual in numerical studies
    • …
    corecore