129 research outputs found
A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).Centro de Investigaciones Geológica
The continental assembly of SW Gondwana (Ediacaran to Cambrian): a synthesis
SW Gondwana resulted from complex interplay between continental amalgamation and
dispersal between ~ 650 and 490 Ma. The main cratons involved were Laurentia, Amazonia–
MARA (Proterozoic Maz–Arequipa–Rio Apa, Casquet et al., 2012), Kalahari, Rio de la Plata
(RPC), Congo and East Antarctica (Mawson block). Several collisional orogenic belts resulted,
notably the East Africa–Antarctica, Brasiliano–Panafrican, Pampean–Saldania, and Ross–
Delamerian orogens.
East-Antarctica broke away from the western margin of Laurentia in Rodinia. After a long drift
and counter-clockwise rotation (Dalziel, 2013) it collided with Congo and Kalahari to produce
the southern part of the left-lateral transpressional East Africa–Antarctica orogen between
580 and 550 Ma, completing the amalgamation of East Gondwana. The Trans-Antarctic
margin became an active one in the Ediacaran and subduction of the Pacific Ocean lithosphere
occurred throughout the Paleozoic, forming a tract of the Terra Australis orogen. NW–SE
directed compression in Late Cryogenian and Early Ediacaran times promoted closure of the
Adamastor Ocean, resulting in the left-lateral transpressional Brasiliano–Pan African orogeny
between 650 and 570 Ma.
The Pampean orogenic belt to the west of the RPC resulted from right-lateral collision between
Laurentia and its eastern extension MARA on the one hand and Kalahari–RPC on the other.
Ocean opening started at ~ 630 Ma and subduction and further collision took place between
540 and 520 Ma, coeval with the northward drift of Laurentia (~ 540 Ma) away from MARA
and the consequent formation of the proto-Andean margin of Gondwana. The margins of the
intervening Puncoviscana ocean were covered by Laurentia-derived siliciclastic sediments and
carbonates on the MARA side between 630 and ~ 540 Ma (Rapela et al, 2014; this symposium),
and by the marine siliciclastic Puncoviscana Formation on the other. The latter formation,
deposited between a 570 and ~530 Ma, received input from large alluvial fans descending
from juvenile Mesoproterozoic and Neproterozoic sources (new Hf isotope evidence) largely
located in the southern East Africa–Antarctica orogen. The Pampean orogen extended into
the Saldania–Gariep orogen of southern South Africa (545–520 Ma) and was apparently
discordant to the earlier Brasiliano–Pan African orogen. In late-Early to late Cambrian times the
Pampean–Saldania realm evolved into a passive margin with siliciclastic platform sedimentation.
The Pampean-Saldania realm was separated from the active Trans-Antarctic margin of East
Antarctica by an inferred transform fault in Ediacaran to Cambrian times. Regional NW–SW
shortening in the Ediacaran became N–S directed in the Cambrian, suggesting a major plate
reorganization at this time.Peer reviewe
New SHRIMP U-Pb data from the Famatina Complex : Constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina
New SHRIMP U-Pb zircon ages are reported for igneous and sedimentary rocks of the Famatina Complex, constraining the age of the magmatism and the ensialic basins. Together with whole-rock and isotope geochemistry for the igneous rocks from the complex, these ages indicate that the voluminous parental magmas of metaluminous composition were derived by partial melting of an older lithosphere without significant asthenospheric contribution. This magmatism was initiated in the Early Ordovician (481 Ma). During the Mid-Late Ordovician, the magmatism ceased (463 Ma), resulting in a short-lived (no more than ~20 Ma) and relatively narrow (~100–150 km) magmatic belt, in contrast to the long-lived cordilleran magmatism of the Andes. The exhumation rate of the Famatina Complex was considerably high and the erosional stripping and deposition of Ordovician sediments occurred soon after of the emplacement of the igneous source rocks during the Early to mid-Ordovician. During the upper Mid Ordovician the clastic contribution was mainly derived from plutonic rocks. Magmatism was completely extinguished in the Mid Ordovician and the sedimentary basins closed in the early Late Ordovician.Centro de Investigaciones Geológica
New SHRIMP U-Pb data from the Famatina Complex : Constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina
New SHRIMP U-Pb zircon ages are reported for igneous and sedimentary rocks of the Famatina Complex, constraining the age of the magmatism and the ensialic basins. Together with whole-rock and isotope geochemistry for the igneous rocks from the complex, these ages indicate that the voluminous parental magmas of metaluminous composition were derived by partial melting of an older lithosphere without significant asthenospheric contribution. This magmatism was initiated in the Early Ordovician (481 Ma). During the Mid-Late Ordovician, the magmatism ceased (463 Ma), resulting in a short-lived (no more than ~20 Ma) and relatively narrow (~100–150 km) magmatic belt, in contrast to the long-lived cordilleran magmatism of the Andes. The exhumation rate of the Famatina Complex was considerably high and the erosional stripping and deposition of Ordovician sediments occurred soon after of the emplacement of the igneous source rocks during the Early to mid-Ordovician. During the upper Mid Ordovician the clastic contribution was mainly derived from plutonic rocks. Magmatism was completely extinguished in the Mid Ordovician and the sedimentary basins closed in the early Late Ordovician.Centro de Investigaciones Geológica
A deformed alkaline igneous rock–carbonatite complex from the Western Sierras Pampeanas, Argentina: Evidence for late Neoproterozoic opening of the Clymene Ocean?
A deformed ca. 570Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of theWestern Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582±60Ma (MSWD= 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. ±60Ma (MSWD= 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 206Pb–238Uages between 433 and 612 Ma, with a prominent peak at 560–580Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. ±7Ma (Pampean orogeny) and at ca. 430–440Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust. 570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neoproterozoic lower continental crust.Fil: Casquet, C.. Universidad Complutense de Madrid; EspañaFil: Pankhurst, R .J.. No especifÃca;Fil: Galindo, C.. Universidad Complutense de Madrid; EspañaFil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Fanning, C. M.. No especifÃca;Fil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas FÃsicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas FÃsicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: González Casado, J. M.. Universidad Autónoma de Madrid; EspañaFil: Colombo, Fernando. Consejo N
U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina) : correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane
The Sierras Pampeanas of Argentina, the largest outcrop of pre-Andean crystalline basement in southern South America, resulted from plate interactions along the proto-Andean margin of Gondwana, from as early as Mesoproterozoic to Late Paleozoic times (e.g., Ramos, 2004, and references therein). Two discrete Paleozoic orogenic belts have been recognized: the Early Cambrian Pampean belt in the eastern sierras, and the Ordovician Famatinian belt, which partially overprints it to the west (e.g., Rapela et al., 1998). In the Western Sierras Pampeanas, Mesoproterozoic igneous rocks (ca. 1.0–1.2 Ga) have been recognized in the Sierra de Pie de Palo (Fig. 1) (McDonough et al., 1993 M.R. McDonough, V.A. Ramos, C.E. Isachsen, S.A. Bowring and G.I. Vujovich, Edades preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras Pampeanas occidentales de San Juán: sus implicancias para el supercontinente proterozoico de Rodinia, 12° Cong. Geol. Argentino, Actas vol. 3 (1993), pp. 340–342.McDonough et al., 1993, Pankhurst and Rapela, 1998 and Vujovich et al., 2004) that are time-coincident with the Grenvillian orogeny of eastern and northeastern North America (e.g., Rivers, 1997 and Corrievau and van Breemen, 2000). These Grenvillian-age rocks have been considered to be the easternmost exposure of basement to the Precordillera Terrane, a supposed Laurentian continental block accreted to Gondwana during the Famatinian orogeny (Thomas and Astini, 2003, and references therein). However, the boundaries of this Grenvillian belt are still poorly defined, and its alleged allochthoneity has been challenged (Galindo et al., 2004). Moreover, most of the Grenvillian ages so far determined relate to igneous protoliths, and there is no conclusive evidence for a Grenvillian orogenic belt, other than inferred from petrographic evidence alone (Casquet et al., 2001). We provide here the first evidence, based on U–Pb SHRIMP zircon dating at Sierra de Maz, for a Grenville-age granulite facies metamorphism, leading to the conclusion that a continuous mobile belt existed throughout the proto-Andean margin of Gondwana in Grenvillian times
The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? : Implications for West Gondwana margin evolution
The rocks of Sierra de Maz and Sierra del Espinal (Western Sierras Pampeanas) represent pre-Famatinian (Ordovician) basement. Isotope compositions (Nd and Pb) of metasedimentary rocks and SHRIMP U–Pb dating of detrital zircons, combined with other geological evidence, show that three parallel N–S domains can be recognized. The central Maz Domain contains pre-Grenvillian metasedimentary rocks deposited between 1.2 and 1.6 Ga, that underwent Grenvillian granulite facies metamorphism and were intruded by mafic igneous rocks and massif-type anorthosites. Metasedimentary rocks have high Nd TDM ages (1.7–2.7 Ga) and very radiogenic Pb (μ = 9.8–10.2), suggesting provenance from reworked early Proterozoic or Archean continental crust. The domains to the east and west of the Maz Domain consist of three metasedimentary sequences with Nd TDM ages between 1.2 and 1.6 Ga and variably radiogenic Pb (μ = 9.6–10.0). U–Pb SHRIMP dating of detrital zircons, Nd TDM model ages and comparison with other data suggest that these sequences are post-Grenvillian, i.e., Neoproterozoic and/or early Paleozoic. The Maz Domain is interpreted as a suspect terrane similar to the northern Arequipa–Antofalla craton that forms the basement of the Central Andes; both underwent Grenville-age orogeny and were probably once continuous along the western margin of Amazonia (West Gondwana).Centro de Investigaciones Geológica
Vulnerability analysis in complex networks under a flood risk reduction point of view
The measurement and mapping of transportation network vulnerability to natural hazards constitute subjects of global interest for a sustainable development agenda and as means of adaptation to climate change. During a flood, some elements of a transportation network can be affected, causing the loss of lives. Furthermore, impacts include damage to vehicles, streets/roads, and other logistics services - sometimes with severe economic consequences. The Network Science approach may offer a valuable perspective considering one type of vulnerability related to network-type critical infrastructures: the topological vulnerability. The topological vulnerability index associated with an element is defined as reducing the network’s average efficiency due to removing the set of edges related to that element. In this paper, we present the results of a systematic literature overview and a case study applying the topological vulnerability index for the highways in Santa Catarina (Brazil). We produce a map considering that index and areas susceptible to urban floods and landslides. Risk knowledge, combining hazard and vulnerability, is the first pillar of an Early Warning System and represents an important tool for stakeholders of the transportation sector in a disaster risk reduction agenda.Peer Reviewe
O–H–Sr–Nd isotope constraints on the origin of the Famatinian magmatic arc, NW Argentina
We report a study of whole-rock O–H–Sr–Nd isotopes of Ordovician igneous and metamorphic rocks exposed at different crustal palaeodepths along c. 750 km in the Sierras Pampeanas, NW Argentina. The isotope compositions preserved in the intermediate rocks (mostly tonalite) (average δ18O = +8.7 ± 0.5‰, δD = −73 ± 14‰, 87Sr/86Srt = 0.7088 ± 0.0001 and eNdt = −4.5 ± 0.6) show no major difference from those of most of the mafic rocks (average δ18O = +8 ± 0.8‰, δD = −84 ± 18‰, 87Sr/86Srt = 0.7082 ± 0.0016 and eNdt = −4 ± 1.1), suggesting that most of their magmas acquired their crustal characteristics in the mantle. The estimate of assimilation of crustal material (δ18O = +12.2 ± 1.7‰, δD = −89 ± 21‰, 87Sr/86Srt = 0.7146 ± 0.0034 and eNdt = −6.9 ± 0.7) by the tonalite is in most samples within the range 10–20%. Felsic magmas that reached upper crustal levels had isotope values (δ18O = +9.9 ± 1.5‰, δD= −76 ± 5‰, 87Sr/86Srt = 0.7067 ± 0.0010, eNdt = −3.5 ± 1.4) suggesting that they were not derived by fractionation of the contaminated intermediate magmas, but evolved from different magma batches. Some rocks of the arc, both igneous (mostly gabbro and tonalite) and metamorphic, underwent restricted interaction with meteoric fluids. Reported values of δ18O of magmatic zircons from the Famatinian arc rocks (+6 to +9‰) are comparable to our δ18O whole-rock data, indicating that pervasive oxygen isotope exchange in the lower crust was not a major process after zircon crystallization.Centro de Investigaciones Geológica
A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).Centro de Investigaciones Geológica
- …