2,736 research outputs found

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Avaliação de clones de Brachiaria ruziziensis quanto à tolerância ao alumínio em solução nutritiva.

    Get PDF

    Avaliação de clones de Cynodon nlemfluensis quanto a tolerância ao alumínio tóxico em solução nutritiva.

    Get PDF

    Runoff volume and soil loss from forest roads under normal rainfall conditions

    Get PDF
    Foram determinados o volume total de água escoada e a perda de solo através da produção de sedimentos provenientes de segmentos de estradas florestais em condições de chuva natural, com diferentes valores de precipitações. As inclinações dos segmentos de 1 e 7% foram analisadas, enquanto os comprimentos variaram de 20 e 40 m, com 4 m de largura. Os segmentos de estrada foram delimitados com tábuas de 0,30 m de largura, envolvidas em lona plástica, para sua impermeabilização. Os dados de volume e intensidade de precipitação diária foram obtidos com a instalação de pluviômetro e pluviógrafo no local. O período de coleta de dados foi de um ano, concentrando-se na época das chuvas. O volume de enxurrada foi mais afetado pelo comprimento do segmento, ao passo que a massa de solo sofreu maior influência da declividade. A massa de solo erosinado cresceu exponencialmente em função do incremento do volume de enxurrada. _________________________________________________________________________________________ ABSTRACT: The total runoff volume and soil loss caused by the production of sediments derived from forest road segments under normal rainfall conditions were determined. Segment slopes from 1 and 7% were analyzed, with segment lengths ranging from 20 and 40 m and width of 4 m. The road segments were marked with 0.30 m wide boards, protected with a plastic, waterproof film. Rainfall volume and intensity data were daily obtained by means of pluviometers and pluviographs. Data collection period was one year, concentrated in the rainy season. Runoff volume was most affected by segment length while soil loss was most affected by steepness. Soil sediment mass increased exponentially in function of the increased runoff volume

    Tolerância diferencial de clones de capim elefante ao alumínio tóxico.

    Get PDF

    Jejunal Diverticular Perforation due to Enterolith

    Get PDF
    Jejunal diverticulosis is a rare entity with variable clinical and anatomical presentations. Although there is no consensus on the management of asymptomatic jejunal diverticular disease, some complications are potentially life-threatening and require early surgical treatment. Small bowel perforation secondary to jejunal diverticulitis by enteroliths is rare. The aim of this study was to report a case of small intestinal perforation caused by a large jejunal enterolith. An 86-year-old woman was admitted with signs of diffuse peritonitis. After initial fluid recovery the patient underwent emergency laparotomy. The surgery showed that she had small bowel diverticular disease, mainly localized in the proximal jejunum. The peritonitis was due to intestinal perforation caused by an enterolith 12 cm in length, localized inside one of these diverticula. The intestinal segment containing the perforated diverticulum with the enterolith was removed and an end-to-end anastomosis was done to reconstruct the intestinal transit. The patient recovered well and was discharged from hospital on the 5th postoperative day. There were no signs of abdominal pain 1 year after the surgical procedure. Although jejunal diverticular disease with its complications, such as formation of enteroliths, is difficult to suspect in patients with peritonitis, it should be considered as a possible source of abdominal infection in the elderly patient when more common diagnoses have been excluded

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Tecido vegetal.

    Get PDF
    Decomposição e solubilização; Determinações analíticas; Sistema polivalente para determinação multielementar em análise de plantas.bitstream/item/197280/1/TECIDO-VEGETAL.pd
    corecore