602 research outputs found

    Multiple crack propagation in friction stir welded aluminium joints

    Get PDF
    This paper is concerned with the simulation of crack propagation in friction stir welded butt joints, in order to assess the influence of process induced microstructural alterations and residual stresses on the fatigue behaviour of the assembly. The approach employed is based on the coupled use of the finite element method and the dual boundary element method in order to take advantage of the main capabilities of the two methods. The distribution of the process induced residual stresses has been mapped by means of the contour method. Then, the computed residual stresses field has been superimposed, in a dual boundary element environment, to the stress field as a result of a remote fatigue traction load and the crack growth is simulated. A two-parameter crack growth law, based on the evaluation of two thresholds, for the material being analysed, is used for the crack propagation rate assessment. The stress intensity factors are evaluated using the J-integral technique. Computational results have been compared with experimental data, provided from constant amplitude crack propagation tests on welded samples, showing the subdivision of the overall fatigue life in the two periods of crack initiation and crack propagation

    Computational Approaches for Modeling the Multiphysics in Pultrusion Process

    Get PDF
    Pultrusion is a continuous manufacturing process used to produce high strength composite profiles with constant cross section. The mutual interactions between heat transfer, resin flow and cure reaction, variation in the material properties, and stress/distortion evolutions strongly affect the process dynamics together with the mechanical properties and the geometrical precision of the final product. In the present work, pultrusion process simulations are performed for a unidirectional (UD) graphite/epoxy composite rod including several processing physics, such as fluid flow, heat transfer, chemical reaction, and solid mechanics. The pressure increase and the resin flow at the tapered inlet of the die are calculated by means of a computational fluid dynamics (CFD) finite volume model. Several models, based on different homogenization levels and solution schemes, are proposed and compared for the evaluation of the temperature and the degree of cure distributions inside the heating die and at the postdie region. The transient stresses, distortions, and pull force are predicted using a sequentially coupled three-dimensional (3D) thermochemical analysis together with a 2D plane strain mechanical analysis using the finite element method and compared with results obtained from a semianalytical approac

    Perturbations of eigenvalues embedded at threshold: one, two and three dimensional solvable models

    Full text link
    We examine perturbations of eigenvalues and resonances for a class of multi-channel quantum mechanical model-Hamiltonians describing a particle interacting with a localized spin in dimension d=1,2,3d=1,2,3. We consider unperturbed Hamiltonians showing eigenvalues and resonances at the threshold of the continuous spectrum and we analyze the effect of various type of perturbations on the spectral singularities. We provide algorithms to obtain convergent series expansions for the coordinates of the singularities.Comment: 20 page

    Microstructural and Mechanical Properties of Al2O3 and Al2O3/TiB2 Ceramics Consolidated by Plasma Pressure Compaction

    Get PDF
    Alumina oxide ceramics were produced by plasma pressure compaction (P2C) sintering process. Two types of pure α-alumina (Al2O3) and a mixture of alumina and titanium diboride (TiB2) powders were used as starting materials. Microstructure and mechanical properties, namely hardness, elastic modulus, and fracture toughness, were analyzed and correlated to the type of the sintered powders and the adopted manufacturing route. The microstructural development and the chemical composition variation induced by the sintering process were assessed by using scanning electron microscopy and x-ray diffraction. Nano-indentation and Chevron notch beam techniques were adopted to estimate the mechanical properties of the sintered ceramics. The conducted analyses show the capability of P2C technique to produce sound alumina ceramics. Pure alumina bulks exhibit a good level of compaction and mechanical properties close to those achievable with conventional sintering processes, such as hot isostatic pressing or spark plasma sintering. No significant alterations in the chemical composition of the ceramics were observed. The addition of the titanium diboride in the alumina powders caused a moderate increase in the grain size lowering the hardness and Young’s modulus of the sintered alumina and, at the same time, increased its fracture toughness to the occurrence of toughening mechanisms, like crack bridging and crack deflection

    Magnesium and Aluminium alloys Dissimilar Joining by Friction Stir Welding

    Get PDF
    Abstract Multi-material lightweight structures are gaining a great deal of attention in several industries, in particular where a trade-off between reduced weight, improved performances, and cost compression is required. Magnesium alloys, such as the zinc-rare earth elements ZE41A alloy, fulfill the first two requirements; however, they are susceptible to corrosion and relatively expensive. Lightweight structures hybridization, for instance combining Magnesium alloys and Aluminium alloys, is currently under consideration as a potential solution to this problem. Nevertheless, dissimilar joining of Magnesium and Aluminium alloys is challenging due to the significant differences in physical properties, as well as to the precipitation of brittle intermetallic compounds, such as Al 12 Mg 17 and Al 3 Mg 2 . In this study, the dissimilar joining of Magnesium and Aluminium alloys by friction stir welding process is discussed. In particular, 4 mm thick plates of ZE41A Mg alloy and AA2024-T3 Al alloy were welded in the butt joint configuration. The feasibility of the process was assessed by means of microstructure and mechanical analysis. The formation of brittle intermetallic compounds was investigated as well

    Asymmetric Organocatalysis and Continuous Chemistry for an Efficient and Cost-Competitive Process to Pregabalin

    Get PDF
    Herein, we present the scale up development of an innovative synthetic process to pregabalin. The process is underpinned by two enabling technologies critical to its success; continuous chemistry allowed a safe and clean production of nitroalkene, and asymmetric organocatalysis gave access to the chiral intermediate in an enantioenriched form. Crucial to the success of the process was the careful development of a continuous process to nitroalkene and optimization of the organocatalyst and of the reaction conditions to attain remarkably high turn-over frequency in the catalytic asymmetric reaction. Successful recycle of the organocatalysts was also developed in order to achieve a cost-competitive process

    Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems

    Full text link
    This paper presents Kimera-Multi, the first multi-robot system that (i) is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures resulting from perceptual aliasing, (ii) is fully distributed and only relies on local (peer-to-peer) communication to achieve distributed localization and mapping, and (iii) builds a globally consistent metric-semantic 3D mesh model of the environment in real-time, where faces of the mesh are annotated with semantic labels. Kimera-Multi is implemented by a team of robots equipped with visual-inertial sensors. Each robot builds a local trajectory estimate and a local mesh using Kimera. When communication is available, robots initiate a distributed place recognition and robust pose graph optimization protocol based on a novel distributed graduated non-convexity algorithm. The proposed protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures while being robust to outliers. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots. Both real and simulated experiments involve long trajectories (e.g., up to 800 meters per robot). The experiments show that Kimera-Multi (i) outperforms the state of the art in terms of robustness and accuracy, (ii) achieves estimation errors comparable to a centralized SLAM system while being fully distributed, (iii) is parsimonious in terms of communication bandwidth, (iv) produces accurate metric-semantic 3D meshes, and (v) is modular and can be also used for standard 3D reconstruction (i.e., without semantic labels) or for trajectory estimation (i.e., without reconstructing a 3D mesh).Comment: Accepted by IEEE Transactions on Robotics (18 pages, 15 figures

    Prediction of Friction Stir Welding effects on AA2024-T3 plates and stiffened panels using a shell-based finite element model

    Get PDF
    Manufacturing-induced effects significantly affect in-service behaviour of welded structures, such as integrally stiffened panels for aeronautic applications. Being a complex phenomenon with several variables involved, the assessment of the effects coming from welding usually relies on numerical simulations. Here, a novel shell-based finite element model is proposed to accurately simulate the transient thermal fields and stress-strain distributions resulting from friction stir welding (FSW) processes. The capability of the model to predict (i) residual stresses, (ii) material softening and (iii) geometric distortion of the welded parts is assessed by the modelling and simulation of FSW applied on aluminium integrally stiffened panels
    • …
    corecore