194 research outputs found

    Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment

    Get PDF
    Abstract Increasing water use efficiency is one of the main challenges of sustainable fruit tree production. From 2013 to 2015 we measured actual evapotranspiration (ETa) using eddy covariance in a well-irrigated apple orchard located in in South Tyrol (Italy), a sub-humid environment. We assessed the experimental crop coefficient ( K c e x p ) and analyzed the dependency of Kc on specific environmental variables at a daily time scale. K c e x p values changed throughout the season following a bell-shaped trend and were generally lower than the FAO tabular values corrected for local climatic conditions. In the mid-season phase, when LAI and tabular Kc are supposed to be constant, the average experimental Kc ( K c ¯ e x p ) was 1.01, 86% of the Kc value reported by FAO (1.18). Mid-season Kc residuals ( K c e x p - K c ¯ e x p ) were positively correlated with daily vapor pressure deficit (VPD) (ρ = 0.45), suggesting that the daily Kc variability observed is due, at least in part, to changes in the evaporative demands of the atmosphere. We explain these results by considering the relatively humid environment, the high water availability and the fact that leaves on apple trees are more tightly coupled to the atmosphere with respect to a smoother grass surface

    A life-cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethylcarbonate

    Get PDF
    Poly-hydroxyalkanoates are an example of biodegradable and biocompatible polymers, produced from renewable raw materials. With respect to other bioplastics the market share of poly-hydroxyalkanoates is still limited because of their commercial costs. To develop more cost-effective processes, a multilevel approach is usually undertaken combining innovative, cheaper and more effective microbial cultivation with safe and cheap extraction and purification methodologies. This study assesses the potential life cycle environmental impacts related to a novel protocol poly-hydroxyalkanoates extraction based on dimethyl carbonate in comparison to the use of halogenated hydrocarbons (in particular 1,2 dicholoroethane). Four scenarios are analysed for the dimethyl carbonate protocol considering: extraction from microbial slurry or from dried biomass, and recovery by solvent evaporation or polymer precipitation. The life cycle assessment demonstrates that the environmental performances of dimethyl carbonate-based protocols are far better than those of the most comparative process using the halogenated hydrocarbons. The scenario that foresees the extraction of dried biomass and recovers solvent by evaporation appears to be the most promising in terms of environmental sustainability performance

    Atypical presentation of juvenile multiple sclerosis in a patient with COVID-19

    Get PDF
    Purpose: To report our experience with a case of a very atypical clinical onset of multiple sclerosis in a young boy during a COVID-19 infection. Case report: A 16-year-old boy was referred to our ophthalmology clinic with a complete isolated bilateral horizontal gaze palsy. The condition had onset suddenly 2 weeks prior and he had no associated symptoms, as well as no significant medical history. His corrected visual acuity was 0.0 logMAR in both eyes. While hospitalized, he was found infected with COVID-19. Subsequent brain MRI showed multiple lesions typical of a yet undiagnosed MS, as well as an active pontine plaque which was highly probable the cause of the horizontal gaze palsy. High-dose steroid treatment was initiated 1 week later, after the patient exhibited negative COVID-19 test results. Conclusion: Clinical manifestations of MS are rarely seen in male teenagers and only a few cases of isolated bilateral horizontal gaze palsy have been reported as the initial manifestation, but never during concomitant COVID-19 infection. We presume that the presence of COVID-19 may have been a neuroinflammatory trigger of underlying MS

    Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum NfL and pNfH: A Longitudinal Multicentre Study

    Get PDF
    Objective: Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the likely most treatment-relevant stage within the presymptomatic phase: the conversion stage. Methods: We longitudinally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-negative within-family controls. Results: In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates. Interpretation: Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD. ANN NEUROL 2022;91:33–47

    A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia

    Get PDF
    Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (\u27converters\u27). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model\u27s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions

    Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN-Neuroimaging Network

    Get PDF
    Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures

    WOOD-UP

    Get PDF
    The fundamental vision of the WOOD-UP project was to develop existing wood gasification plants in South Tyrol towards a polygenerative use in order to be able to produce not only energy but also high-quality charcoal (biochar) for the improvement of soil fertility and for climate protection. The project, funded by the European Regional Development Fund ERDF 2014–2020, was implemented by the Free University of Bolzano together with the Laimburg Research Centre. Based on the life cycle analysis (LCA) or scenario analysis of the entire production chain of wood gasification, strengths and weaknesses of the existing systems were identified with regard to their impact on the environment. Thanks to the results obtained, a number of suggestions for improvement could be formulated.; Il miglioramento verso un assetto poligenerativo degli attuali impianti altoatesini di gassificazione della biomassa legnosa, dove oltre all’energia si possa produrre biochar di qualità da impiegare in agricoltura come ammendante con effetti positivi sulla fertilità dei suoli e sulla mitigazione dei cambiamenti climatici è la visione che ha sostenuto il progetto WOOD-UP. Il progetto, finanziato con fondi FESR 2014-2020, ha visto la collaborazione tra la Libera Università di Bolzano e il Centro di Sperimentazione Laimburg. L’analisi del ciclo di vita e di scenario dell’intera filiera di gassificazione ha evidenziato elementi di forza e di debolezza dell’attuale filiera in termini di impatti ambientali e ha permesso di avanzare proposte di miglioramento sulla base dei risultati ottenuti dalla sperimentazione. ; Grundlegende Vision des Projektes WOOD-UP war die Entwicklung der bestehenden Holzvergasungsanlagen in Südtirol hin zu einer polygenerativen Nutzung, um neben Energie auch hochwertige Holzkohle (Biochar) zur Verbesserung der Bodenfruchtbarkeit und zum Klimaschutz erzeugen zu können. Das mit Mitteln aus dem Europäischen Fonds für regionale Entwicklung EFRE 2014–2020 finanzierte Projekt wurde von der Freien Universität Bozen gemeinsam mit dem Versuchszentrum Laimburg umgesetzt. Anhand der Lebenszyklusanalyse (LCA) bzw. der Szenarioanalyse der gesamten Produktionskette der Holzvergasung wurden Stärken und Schwächen der bestehenden Systeme hinsichtlich ihrer Auswirkungen auf die Umwelt aufgezeigt. Dank der erzielten Versuchsergebnisse konnte eine Reihe von Verbesserungsvorschlägen formuliert werden

    Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The presymptomatic phase of neurodegenerative diseases are characterized by structural brain changes without significant clinical features. We set out to investigate the contribution of functional network resilience to preserved cognition in presymptomatic genetic frontotemporal dementia. We studied 172 people from families carrying genetic abnormalities in C9orf72, MAPT, or PGRN. Networks were extracted from functional MRI data and assessed using graph theoretical analysis. We found that despite loss of both brain volume and functional connections, there is maintenance of an efficient topological organization of the brain's functional network in the years leading up to the estimated age of frontotemporal dementia symptom onset. After this point, functional network efficiency declines markedly. Reduction in connectedness was most marked in highly connected hub regions. Measures of topological efficiency of the brain's functional network and organization predicted cognitive dysfunction in domains related to symptomatic frontotemporal dementia and connectivity correlated with brain volume loss in frontotemporal dementia. We propose that maintaining the efficient organization of the brain's functional network supports cognitive health even as atrophy and connectivity decline presymptomatically.This work was funded by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant [grant number CoEN015]. JBR was supported by the Wellcome Trust [grant number 103838]. JBR, RB, TR, and SJ were supported by the NIHR Cambridge Biomedical Research Centre and Medical Research Council [grant number G1100464]. The Dementia Research Centre at UCL is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation, NIHR Queen Square Dementia Biomedical Research Unit, NIHR UCL/H Biomedical Research Centre and Dementia Platforms UK. JDR is supported by an MRC Clinician Scientist Fellowship [grant number MR/M008525/1] and has received funding from the NIHR Rare Disease Translational Research Collaboration [grant number BRC149/NS/MH]. MM is supported by the Canadian Institutes of Health Research, Department of Medicine at Sunnybrook Health Sciences Centre and the University of Toronto, and the Sunnybrook Research Institute. RL is supported by Réseau de médecine génétique appliquée, Fonds de recherche du Québec—Santé [grant number FRQS]. FT is supported by the Italian Ministry of Health. DG is supported by the Fondazione Monzino and Italian Ministry of Health, Ricerca Corrente. SS is supported by Cassa di Risparmio di Firenze [grant number CRF 2013/0199] and the Ministry of Health [grant number RF-2010-2319722]. JvS is supported by The Netherlands Organisation for Health Research and Development Memorable grant [grant number 733050103] and Netherlands Alzheimer Foundation Memorable grant [grant number 733050103].info:eu-repo/semantics/publishedVersio

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.The authors thank all the volunteers for their participation in this study. SBE is a recipient of the Rio-Hortega post-residency grant from the Instituto de Salud Carlos III, Spain. This study was partially funded by Fundació Marató de TV3, Spain (grant no. 20143810 to RSV). The GENFI study has been supported by the Medical Research Council UK, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, as well as other individual funding to investigators. KM has received funding from an Alzheimer’s Society PhD studentship. JDR acknowledges support from the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre, the UK Dementia Research Institute, Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. JCvS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organization for Scientific Research (NWO) grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. CG have received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR: 2015-02926, and 2018-02754, the Swedish FTD Initiative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. DG has received support from the EU Joint Programme – Neurodegenerative Disease Research (JPND) and the Italian Ministry of Health (PreFrontALS) grant 733051042. JBR is funded by the Wellcome Trust (103838) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. MM has received funding from a Canadian Institutes of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. EF has received funding from a CIHR grant #327387. JDR is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. MS was supported by a grant 779257 “Solve-RD” from the Horizon 2020 research and innovation programme.info:eu-repo/semantics/publishedVersio
    corecore