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Objective: Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay
or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter
cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the
likely most treatment-relevant stage within the presymptomatic phase: the conversion stage.Methods: We longitudi-
nally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic
FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic
and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-
negative within-family controls.
Results: In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with
brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by
increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change
rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective
potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change
rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-
onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates.
Interpretation: Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment
response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker
cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD.

ANN NEUROL 2022;91:33–47

Frontotemporal dementia (FTD) is a devastating neurode-
generative disease characterized by progressive decline of

executive, behavioral, and language functions,1–3 frequently
resulting from mutations in the genes C9orf72, GRN, and
MAPT.4–8 The presymptomatic stages of genetic FTD might
provide a unique opportunity to delay or even prevent neu-
rodegeneration by early therapeutic intervention, with prom-
ising targeted molecular therapies now entering clinical
trials.9,10 However, these presymptomatic stages – which
encompass the accumulation of progressive molecular and
cellular changes in the nervous system before the onset of
dementia – remain poorly defined.11 To pave the way for
future interventional trials, stratification of the pres-
ymptomatic stages based on objective and easily accessible
biomarkers is hence urgently needed. This applies particularly
to the conversion stage, which immediately precedes the
onset of clinically manifest disease and is the likely most
treatment-relevant stage in the presymptomatic period.

We here propose blood levels of neurofilament light
(NfL) and phosphorylated neurofilament heavy (pNfH) as
objective and easily accessible biomarkers for stratifying the
presymptomatic period of genetic FTD, providing a

temporal cascade of their biomarker changes. Neuro-
filaments are neuron-specific cytoskeletal proteins, released
upon neuronal damage and, with ultra-sensitive single mole-
cule array (Simoa) assays, reliably quantifiable in peripheral
blood.12–14 Previous work indicated that NfL blood levels
are increased at the symptomatic stage of FTD15 and also in
temporal proximity to the clinical onset of genetic FTD.16

Similarly, also pNfH blood levels might allow capturing
neuronal disintegration and particularly axonal damage, pos-
sibly reflecting other features of the neurodegenerative pro-
cess than NfL.12,14 Leveraging a large multicenter cohort of
genetic FTD mutation carriers, we here test the hypothesis
that – in the biomarker cascade of genetic FTD – the con-
version stage is demarcated by increased levels of NfL, but
still normal levels of pNfH, whereas the symptomatic stage
is marked by increased levels of both neurofilament types.

Methods
Cohort
Subjects were recruited by the Genetic FTD Initiative
(GENFI), an international consortium with 25 study sites
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across Europe and Canada. Subjects were patients with
FTD caused by mutations in the genes C9orf72, GRN, or
MAPT (symptomatic mutation carriers) and their first-
degree relatives (ie, either noncarriers serving as controls
or presymptomatic mutation carriers).17 Following the
GENFI protocol, subjects underwent comprehensive
annual assessments, including neurological and neuropsy-
chological examination, brain imaging, and blood collec-
tion, as previously described in detail.17 For the present
study, we included all GENFI subjects with at least one
serum sample available (n = 444; sample collec-
tion = 2015–2019). In total, our study included 444 sub-
jects (thereof 117 C9orf72, 104 GRN, and 49 MAPT
carriers, and 174 controls), 196 of whom had longitudinal
samples (50 C9orf72, 48 GRN, and 20 MAPT carriers,
and 78 controls; see Table 1 for cohort details, stratified
by clinical state and gene).

Our study cohort comprises a subset of subjects
(41%) also included in a previous GENFI study16

(n = 184, hereof 79 presymptomatic, 31 symptomatic,
and 4 converting carriers, and 70 controls). Accordingly,
blood samples from 388 (52%) of the 748 study visits
from which blood samples were assessed in our study were
also included in this previous study, but now indepen-
dently measured.

Local ethics committees at each site approved the
study. All subjects provided written informed consent
prior to participation according to the Declaration of
Helsinki.

Mutation carriers were considered symptomatic if
fulfilling established diagnostic criteria for FTD, including
behavioral variant FTD and primary progressive aphasia
phenotypes.1,2 C9orf72 mutation carriers were also consid-
ered symptomatic if fulfilling established criteria for
amyotrophic lateral sclerosis (ALS),18 but not FTD. Those
mutation carriers who were presymptomatic at baseline
but became symptomatic during follow-up are referred to
as converters (6 C9orf72 and 1 GRN carriers). Disease
severity was assessed with the Clinical Dementia Rating
scale plus FTLD modules (CDR plus NACC FTLD),
using the global score.19 As the symptomatic stage can
alternatively also be defined by mutation carriers having a
CDR plus NACC FTLD score ≥1, we also ran the main
analyses with this criterion. Clinical raters were blinded to
the genetic status of at-risk individuals unless these had
undergone predictive testing.

Neurofilament quantification
Blood samples were centrifuged (2,000 g, 10 minutes, at
room temperature). Serum was frozen at �80 �C within
3 hours after collection, shipped and analyzed without any
previous thaw–freeze cycle. We measured neurofilament

levels in duplicates by single molecule array (Simoa) tech-
nique on the Simoa HD-1 Analyzer (Quanterix, Lexing-
ton, MA, USA), using the NF-light Advantage kit for
NfL13 and the pNF-heavy Discovery kit (Quanterix) for
pNfH quantification,14 according to the manufacturer’s
instructions (dilution: 1/4). For NfL, all measurements
had a coefficient of variation (CV) below 20%. For pNfH,
measurements with CV values above 20% (n = 21) were
excluded to ensure comparable quality. For both analytes,
concentrations were in the previously established range of
quantification.13,14 Both NfL and pNfH showed high
technical and intraindividual biological stability (Tables 2
and 3, Fig 5). Technicians were blinded to the genotypic
and clinical status of the samples. Longitudinal samples
were measured in the same batch.

Volumetric brain imaging
For quantification of global and frontal brain atrophy,
whole-brain grey matter volume and regional volumes
were quantified by semi-automated segmentation
methods, based on T1-weighted volumetric magnetic reso-
nance imaging (MRI) scans, and grey matter volumes
were expressed as percentages of total intracranial volume,
as previously described.17

Statistical analysis
Baseline levels of neurofilaments. We used Mann–
Whitney U tests (2-sided, significance level: p < 0.05,
Bonferroni-corrected within each biomarker) to compare
neurofilament baseline levels among clinical states (ie,
presymptomatic carriers, converters, symptomatic carriers,
and controls) and among groups of different disease sever-
ity in the early disease stages (unaffected carriers: CDR
plus NACC FTLD = 0, mildly affected carriers: CDR
plus NACC FTLD = 0.5, definitely affected carriers:
CDR plus NACC FTLD ≥ 1, and controls). To correct
the group effects for the age-related Nf increase observed
in controls,15,20 we calculated the z-score of each subject
in relation to the neurofilament distribution in controls at
the same age.21 For this, the difference between the mea-
sured level and the level predicted for controls at the same
age was standardized relative to the distribution in con-
trols at this age. Levels in controls were modeled by linear
regression on the level of log-transformed data. Wherever
possible, we report the effect size r for the applied test.

Annualized change rates of neurofilaments. To capture the
temporal dynamics of neurofilament levels within each sub-
ject, we calculated the individual annualized change rate
(for all subjects for whom longitudinal neurofilament mea-
surements were available, n = 196) as the regression coeffi-
cient of individual linear regressions of the neurofilament
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level over age. The annualized change rates were compared
between clinical states with Mann–Whitney U tests
(as specified above).

Linear mixed-effects models. To characterize the disease
stages of genetic FTD in terms of both neurofilament
levels and their change rates, we used linear mixed-effects
models of longitudinal neurofilament data, thus consider-
ing the covariance between repeated measurements of each
subject.16,22 In the models, we included clinical status
(presymptomatic stage, conversion stage, symptomatic
stage, and controls as the reference group), age (centered
at the mean baseline age of all subjects), and time from
baseline (ie, the first serum sample) as fixed effects, the
interaction of clinical status and time from baseline, and
the random variable subject, modeled by random inter-
cepts (R packages: lme4 and effects). The addition of ran-
dom slopes did not improve the model fit. Neurofilament
levels were log-transformed to meet the models’
assumptions.

Biomarker cascade model. To assess the dynamics of
biomarker changes in terms of timing and effect size
uniformly across several biomarkers, we modeled the
normalized baseline biomarker values (as z-score) over

age with polynomials and compared the predicted
values of carriers with those of controls at the same age
(as z-score difference).23,24 For each biomarker, the bio-
marker values (log-transformed for both NfL and
pNfH) were normalized relative to their distribution in
controls (ie, transformed to z-scores). The z-scores were
modeled with orthogonal polynomials over age, sepa-
rately for carriers and controls to allow different dynam-
ics between groups. Higher-order polynomial terms
were included if significant (max. cubic terms). The
model predictions for carriers were compared to the
predictions for controls at the same age by calculating
the z-score difference. We applied this approach to all
mutation carriers together and, additionally, to the
three genetic groups separately, allowing exploration
also of gene-specific biomarker cascades.

Sample size estimation for intervention trials. We esti-
mated stage-dependent sample sizes for future treatment
trials using the reduction of neurofilament levels
towards the levels observed in healthy controls as out-
come measure.21,25 We estimated the total sample size
required to detect a given control-adjusted relative
reduction of neurofilament levels (20–80%) in the
treatment arm, assuming that null mean change over

TABLE 1. Cohort Characteristics at Baseline

Group Subjects

Subjects
with

longitudinal
samples

Follow-up

duration
(years)

Male
sex

Age
(years) MMSE

CDR
plus

NACC
FTLD

Disease

onset
(years)

Disease

duration
(years)

presymptomatic 172 74 1.42 (1.03–2.47) 37% 41.2 (33.2–50.5) 30 (29–30) 0 (0–0)

- C9orf72 64 25 2.15 (1.30–2.87) 36% 42.5 (33.7–52) 30 (29–30) 0 (0–0)

- GRN 74 35 1.10 (1.01–2.27) 39% 41.2 (33.8–50.7) 30 (30–30) 0 (0–0)

- MAPT 34 14 1.98 (1.12–2.16) 35% 36 (31.9–45.9) 30 (30–30) 0 (0–0)

Converter 7 6 1.68 (1.11–2.45) 71% 62.5 (52.2–65.6) 30 (29–30) 0 (0–0)

- C9orf72 6 5 2.08 (1.28–2.57) 67% 57.9 (51.7–63.5) 30 (30–30) 0 (0–0)

- GRN 1 1 1.03 100% 67.8 28 0

Symptomatic 91 38 1.13 (0.99–1.77) 58% 63.3 (57.6–68.4) 25 (19–27) 2 (1–3) 57 (53–63) 4.4 (2.5–6.4)

- C9orf72 47 20 1.22 (1.00–1.91) 66% 64.6 (57.5–70.2) 26 (23–28) 2 (1–3) 57 (53–63) 5.4 (3–7.2)

- GRN 29 12 1.02 (0.97–1.08) 48% 63.4 (59–68.1) 22 (14–26) 2 (1–3) 60 (55–65) 2.7 (1.9–4.9)

- MAPT 15 6 2.04 (1.76–2.19) 53% 62.5 (55.7–65.1) 24 (19–28) 2 (2–3) 54 (46–59) 6.0 (3.3–8.5)

Non-carriers 174 78 1.18 (1.02–2.23) 43% 44.1 (36.6–55.2) 30 (29–30) 0 (0–0)

The clinical phenotype of symptomatic mutation carriers was behavioral variant FTD (n = 60), primary progressive aphasia (n = 16), amyotrophic lat-
eral sclerosis (n = 7), frontotemporal dementia with amyotrophic lateral sclerosis (n = 3), corticobasal syndrome (n = 2), progressive supranuclear palsy
(n = 1), and dementia not otherwise specified (n = 2). For converters, the age at conversion was 65.7 (54.7–67.4) years. The global follow-up duration
across all subjects with longitudinal samples was 1.19 (1.02–2.23) years. Data are reported as median and interquartile range.
CDR plus NACC FTLD = Clinical Dementia Rating scale plus FTLD modules; MMSE = Mini-Mental State Examination.

36 Volume 91, No. 1

ANNALS of Neurology
 15318249, 2022, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ana.26265 by C
ochrane C

anada Provision, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



time occurred in the placebo arm of the trial. We based
the assumed intersubject variability in the hypothetical
trial on the measured intrasubject variability in the
change of analyte levels (from baseline to first follow-
up) in our mutation carriers. The estimation further
assumed equal numbers of subjects in both study arms
(ie, allocation ratio 1:1), α = 0.05, β = 0.05, 2-tailed
independent t tests, and the use of log-transformed bio-
marker levels. It was performed with GPower version
3.1 software (Kiel, Germany). We also explored the
sample size which would be required for trials aiming to
normalize the increased annualized change rates of NfL
during the conversion stage (instead of reducing its
absolute levels), using the standardized response mean
in analogy to approaches in other neurodegenerative
diseases.26

Data availability
The de-identified data of this article can be accessed on
reasonable request addressed to the GENFI consortium.

Results
NfL and pNfH levels are increased at the
symptomatic, but not the presymptomatic stage
Baseline levels of serum NfL in symptomatic carriers
(38.7 pg/ml [23.7–60.0]) were significantly higher than in con-
trols (6.6 pg/ml [4.8–9.6]; p < 0.001, effect size: r = 0.74;
Fig 1A and B). NfL levels in symptomatic carriers were signifi-
cantly increased also in comparison to presymptomatic carriers
(6.8 pg/ml [4.8–9.0], p < 0.001, r = 0.76), whereas NfL levels
of presymptomatic carriers did not differ significantly from
those of controls (not significant [ns.], r = 0.01). Similarly, also
baseline levels of serum pNfH were significantly higher in
symptomatic carriers (156.0 pg/ml [82.9–399.0]) than in both
controls (47.6 pg/ml [23.7–105.6], p < 0.001, r = 0.47) and
presymptomatic carriers (40.7 pg/ml [20.1–93.2], p < 0.001,
r = 0.51), whereas pNfH levels of presymptomatic carriers did
not differ significantly from those of controls (ns., r = 0.06;
Fig 1C and D). The increase of neurofilament levels from the
presymptomatic to the symptomatic stage was quantitatively
more pronounced for NfL than for pNfH, as evidenced by its
respective effect sizes (NfL: r = 0.76, and pNfH: r = 0.51).
The results were confirmed if corrected for the age-related neu-
rofilament increase observed in controls (NfL: symptomatic vs.
controls: p < 0.001, r = 0.68, symptomatic vs. presympto-
matic: p < 0.001, r = 0.65, presymptomatic vs. controls: ns.,
r = 0.10; pNfH: symptomatic vs. controls: p < 0.001, r =
0.28, symptomatic vs. presymptomatic: p < 0.001, r = 0.29,
presymptomatic vs. controls: ns., r = 0.02). Moreover, the
increases of NfL and pNfH levels from the presymptomatic to
the symptomatic stage were both confirmed within each of the
three genetic subgroups (Fig 1E and F).

TABLE 2. Within- and Between-run Precision of the
NfL and pNfH Assay

Analyte

Mean
concentration
(pg/ml)

Within-run
precision
(%)

Between-run
precision (%)

NfL 6.2 7.5 9.7

NfL 19.0 3.3 3.6

NfL 36.6 7.1 6.0

pNfH 84.4 3.6 5.5

pNfH 23.9 6.2 13.5

pNfH 235.5 4.0 6.1

Within-run precision and between-run precision44 were derived from
4 consecutive runs of the same biological sample, using 3 samples
with different analyte concentrations.
NfL = neurofilament light; pNfH = phosphorylated neurofilament
heavy.

TABLE 3. Intra-individual Stability of NfL and pNfH Levels in Mutation Carriers and Controls

Subject group NfL pNfH Sampling interval (years)

Overall 0.947 (0.930–0.960) 0.947 (0.930–0.961) 1.07 (1.00–1.19)

Controls 0.845 (0.768–0.899) 0.940 (0.906–0.962) 1.07 (1.00–1.19)

Presymptomatic carriers 0.834 (0.749–0.892) 0.943 (0.909–0.964) 1.09 (1.01–1.21)

Symptomatic carriers 0.922 (0.857–0.959) 0.903 (0.814–0.950) 1.05 (0.98–1.14)

We assessed the intra-individual stability of neurofilament levels by calculating the intraclass correlation coefficient (ICC) of each analyte (model:
2-way mixed, single measures, absolute agreement, implemented in the R package irr), using the longitudinal neurofilament data (log-transformed) of
subjects’ baseline and first follow-up visit (74 presymptomatic, 38 symptomatic, and 78 control subjects). The table reports the ICC estimates with
95% confidence intervals and the sampling interval (median and IQR).
IQR = intequartile range; NfL = neurofilament light; pNfH = phosphorylated neurofilament heavy.
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FIGURE 1: NfL and pNfH levels at the presymptomatic, conversion, and symptomatic stage of genetic FTD. Serum levels ofNfL (A, B) and
pNfH (C, D) weremeasured in FTDmutation carriers at the presymptomatic (green), conversion (orange), and symptomatic disease stage
(red), and in mutation-negative controls (blue). For masking purposes, a jitter was added to subjects’ age (A, C), whereas analyses were
done on raw data. Boxes visualize median, lower, and upper quartiles, whiskers extend to data within 1.5�IQR of the median, and dots
represent individual values. Stages were compared with Mann–Whitney U tests (*** p < .001, ns p ≥ .05, two-tailed, Bonferroni-
corrected). For each of the three genetic subgroups (E), baseline NfL levels were significantly higher in symptomatic than
presymptomatic carriers (C9orf72: p < 0.001, r = 0.76, GRN: p < 0.001, r = 0.72, MAPT: p < 0.001, r = 0.76). For reference, baseline
levels of controls are indicated by blue horizontal lines (median with IQR). In addition, baseline pNfH levels were significantly higher in
symptomatic than presymptomatic carriers for each of the three subgroups (F) (C9orf72: p < 0.001, r = 0.53, GRN: p < 0.001, r = 0.51,
MAPT: p = 0.009, r = 0.43, post hoc tests corrected for multiple comparisons). IQR = interquartile range; NfL = neurofilament light;
pNfH=phosphorylated neurofilament heavy.
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NfL levels are increased at the conversion stage,
whereas pNfH levels are still normal
Those presymptomatic mutation carriers who developed
symptomatic disease during the longitudinal follow-up (ter-
med converters) showed significantly higher baseline levels of
NfL (20.3 pg/ml [13.1–30.6]) than non-converting pres-
ymptomatic carriers (6.8 pg/ml [4.8–9.0], p < 0.001, r =

0.27; see Fig 1A and B), indicating that the NfL increase in
genetic FTD precedes the transition from the pres-
ymptomatic to the symptomatic disease stage. NfL levels
hereby accurately distinguished converters from non-
converting presymptomatic carriers (area under the curve
[AUC] = 0.91 [0.80–1.00], estimate and 95% confidence
interval), indicating that NfL levels allow predicting future
conversion. In contrast, baseline levels of pNfH were not sig-
nificantly higher in converters (57.7 pg/ml [28.0–112.5])
than in presymptomatic carriers (40.7 pg/ml [20.1–93.2],
ns., r = 0.06; see Fig 1C and D). Each of these findings was
confirmed if corrected for age-related neurofilament increases
(NfL: converters vs. presymptomatic: p = 0.009, r = 0.21,
pNfH: converters vs. presymptomatic: ns., r = 0.05). Thus,

the conversion stage was marked by increased NfL levels in
combination with still normal pNfH levels.

Individual change rates of neurofilament levels
are increased at the conversion stage for NfL,
and at the symptomatic stage for pNfH
In the group of converters, we observed an intra-individual
longitudinal increase of NfL levels with proximity to the
onset of the symptomatic disease stage (Fig 2A). Accordingly,
the annualized change rate of NfL levels was significantly
higher in converters (7.20 pg/[ml�year], 4.70–10.19]) than
in presymptomatic carriers (0.25 pg/[ml�year], [�0.27–
0.87]; p < 0.001, r = 0.40), indicating an intra-individual
increase of NfL levels in subjects during the conversion stage
(see Fig 2B). The annualized change rate of NfL levels did
not differ significantly between presymptomatic carriers and
controls (0.13 pg/[ml�year], [�0.66–0.65], ns., r = 0.10),
nor between presymptomatic and symptomatic carriers
(1.18 pg/[ml�year], [�1.88–13.20], ns., r = 0.12), sug-
gesting that intra-individual NfL levels might be stable at
normal levels at the presymptomatic stage and, after the

FIGURE 2: Individual longitudinal trajectories and stage-dependent longitudinal dynamics of NfL and pNfH levels in genetic
FTD. For mutation carriers converting from the presymptomatic to the symptomatic stage (converters), the individual
longitudinal trajectories of NfL (A) and pNfH levels (D) are plotted over the time from the clinically observed disease onset,
with negative time values corresponding to the presymptomatic stage. The dashed line marks the upper quartile of baseline
neurofilament levels in non-converting presymptomatic mutation carriers. The individual annualized change rates of NfL
(B) and pNfH levels (E) were estimated by individual linear regressions for mutation carriers at the presymptomatic (green),
conversion (orange), and symptomatic stage (red), and for controls (blue). Boxes visualize median, lower, and upper
quartiles, whiskers extend to data within 1.5�IQR of the median, and dots represent individual values. For improved
readability, two extreme outliers of the pNfH change rate at the symptomatic stage (�586 pg/[ml�year], +662 pg/[ml�year])
are not displayed. Stages were compared with Mann–Whitney U tests (*** p < .001, * p < .05, ns p ≥ .05, two-tailed,
Bonferroni-corrected). We modeled the longitudinal neurofilament levels for NfL (C) and pNfH (F) in relation to time from
baseline, clinical state (ie, presymptomatic carrier, converter, symptomatic carrier, and control) and age at baseline, using
linear mixed-effects models. The figures display the model predictions at mean baseline age, with shaded areas
representing 95% confidence intervals. IQR = interquartile range; NfL = neurofilament light; pNfH = phosphorylated
neurofilament heavy.
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conversion stage, stable at increased levels at the symptomatic
stage (see Fig 2B). NfL change rates accurately distinguished
converters from non-converting carriers (AUC = 0.94
[0.83–1.00]). For pNfH, the change rate was significantly
higher in symptomatic carriers (16.40 pg/[ml�year], �3.86–
58.40]) than in presymptomatic carriers (1.28 pg/[ml�year],
[�2.93–7.52], p = 0.018, r = 0.27; see Fig 2D and E), but
did not differ significantly between presymptomatic subjects
and converters (12.83 pg/[ml�year], [7.35–26.34], ns.,
r = 0.23), nor between presymptomatic subjects and
controls (0.83 pg/[ml�year], [�4.25–15.06], ns., r = 0.05),
suggesting that pNfH levels might remain stable during the

presymptomatic and conversion stage, but – unlike NfL
levels – increase at the symptomatic stage.

Modeling the disease stages of genetic FTD in
terms of NfL and pNfH levels and their change
rates
To comprehensively characterize the disease stages in terms of
both neurofilament levels and their change rates, a linear mixed-
effects model was calculated, allowing to integrate all longitudinal
follow-up neurofilament measurements and intraindividual
changes as well as to correct for baseline age. The variable time
from baseline hereby allowed estimation of a regression

FIGURE 3: Biomarker cascade of NfL, pNfH, and volumetric MRI changes across the early CDR stages of genetic FTD. (A) To
assess the relative timing and effect size of biomarker changes uniformly for each biomarker (NfL, pNfH, global brain volume,
and frontal brain volume), we modeled the normalized biomarker values as polynomial functions of subjects’ age and compared
the model predictions for carriers to the model predictions for controls at the same age, calculating the z-score difference.
Increases of the z-score difference towards positive values indicate that the biomarker values become more pathological in the
mutation carrier group (ie, increases of neurofilament levels and decreases of brain volumes), whereas a z-score difference of
zero indicates that the respective biomarker values do not differ between mutation carriers and controls. For each biomarker,
the confidence interval is displayed by dotted lines. The colored vertical lines indicate the baseline age (median and IQR) of
mutation carriers grouped by disease severity (unaffected carriers: CDR plus NACC FTLD = 0, mildly affected carriers: CDR plus
NACC FTLD = 0.5, and definitely affected carriers CDR plus NACC FTLD ≥ 1), as observed in the present cohort. (B–D) The same
modeling approach was analogously applied to the three genetic groups of mutation carriers (B: C9orf72, C: GRN, and D: MAPT)
to explore gene-specific dynamics and effect sizes of the biomarker cascade. CDR = Clinical Dementia Rating; FTD =

frontotemporal dementia; IQR = interquartile range; MRI = magnetic resonance imaging; NfL = neurofilament light; pNfH =
phosphorylated neurofilament heavy.
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coefficient reflecting the biomarker annual change rate, whereas
its interaction with the variable clinical state allowed capturing
differences in the annual change rates between clinical states. The
model showed a significant effect of subjects’ clinical status on
NfL levels (p < 0.001) and a significant interaction of time from
baseline with clinical status (p= 0.008; see Fig 2C; Supplement
1 for complete statistical results). Compared with controls, NfL
levels were significantly increased in converters (p < 0.001) and
symptomatic carriers (p < 0.001), but not in presymptomatic
carriers (p = 0.631). The annual change rate of NfL levels was
significantly increased in converters (p < 0.001), but neither in
presymptomatic (p = 0.377) nor symptomatic carriers (p =

0.854), indicating that the increase of NfL levels occurs at the
conversion stage. For pNfH, the model showed a significant
effect of clinical status on pNfH levels (p= 0.021), without sig-
nificant interaction of time from baseline with clinical status
(Fig 2F; Supplement 2). Compared with controls, pNfH levels
were significantly increased in symptomatic carriers (p= 0.003),

but not in presymptomatic carriers (p = 0.808) or converters
(p = 0.865), indicating that the pNfH increase is linked to the
symptomatic stage. Thus, the analysis by linear mixed-effects
models further supports the notion that the combined temporal
dynamics of both neurofilament types might allow demarcating
the conversion stage: its onset is marked by increased NfL levels
and NfL change rates (but still normal pNfH levels), whereas its
completion with transition to the symptomatic stage is marked
by increased pNfH levels.

Modeling the multimodal biomarker cascade of
genetic FTD: NfL increase concurs with brain
atrophy onset, while pNfH increase starts close
to clinical onset – with varying temporal
dynamics and effect sizes in the three genetic
FTD groups
To further assess the temporal dynamics of each bio-
marker (NfL, pNfH, global and frontal brain volume), we

FIGURE 4: Stratification of the early stages of disease severity in genetic FTD by NfL and pNfH levels. Baseline levels of NfL (A) and
pNfH (C) were compared between unaffected carriers (CDR plus NACC FTLD = 0), mildly affected carriers (CDR plus NACC FTLD = 0.5),
definitely affected carriers (CDR plus NACC FTLD ≥ 1) and controls. To take into consideration the age-related increase of neurofilament
levels, the absolute levels (A, C) were corrected for the age-related increase observed in controls by z-transformation (B, D). Boxes
visualize median, lower, and upper quartiles, whiskers extend to data within 1.5�IQR of the median, and circles represent individual
values. Baseline values of converters are marked by circles filled with grey. Groups were compared with Mann–Whitney U tests (***
p < .001, ** p < .01, * p < .05, ns p ≥ .05, 2-tailed, Bonferroni-corrected). CDR = Clinical Dementia Rating; FTD = frontotemporal
dementia; IQR = interquartile range; NfL = neurofilament light; ns. = not significant; pNfH = phosphorylated neurofilament heavy. [Color
figure can be viewed at www.annalsofneurology.org]
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used polynomials to model the normalized biomarker
values (z-scores) over age and compared the predicted bio-
marker values of mutation carriers to those of controls at
the same age (Fig 3A). The z-score difference allowed cap-
turing timing and effect size of biomarker changes uni-
formly across all biomarkers. In this biomarker cascade,

the NfL z-score difference started to increase at age
42 years (as indicated by the time at which the 95% confi-
dence interval of the z-score difference ceases to overlap
zero), thus preceding the observed clinical onset at age
57 years (53–63 years) by approximately 15 years. In con-
trast, the pNfH z-score difference started to increase at age

FIGURE 5: Within-subject stability of neurofilament levels and stage-dependent sample size estimates for intervention trials in
genetic FTD. The intra-individual stability of NfL (A) and pNfH (B) serum levels from baseline to first follow-up was assessed in
presymptomatic and symptomatic carriers and control subjects. Lines link data of the same individuals. Sample size estimations
(C) were performed for hypothetical intervention trials using the reduction of neurofilament levels as outcome measure, taking
into consideration the disease stage. The estimated total sample size (ie, sum of subjects in both study arms) is plotted over the
assumed therapeutic effect for lowering the neurofilament level in mutation carriers towards the levels observed in healthy
controls. FTD = frontotemporal dementia; NfL = neurofilament light; pNfH = phosphorylated neurofilament heavy. [Color figure
can be viewed at www.annalsofneurology.org]
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53 years, close to the observed clinical onset. For both
NfL and pNfH, the z-score difference reached a plateau at
the late symptomatic stage. Analogous analysis showed
that volumetric changes of the global brain volume and
the frontal lobe volume started at age 39 years, thus pre-
ceding the observed onset by approximately 18 years. In
summary, the NfL increase in mutation carriers preceded
clinical disease onset and concurred with brain atrophy
onset, whereas the pNfH increase started close to clinical
onset (see Fig 3A). Exploratory analogous modeling in the
3 genetic subgroups of mutation carriers (see Fig 3B–D)
suggested that, in each the C9orf72 and GRN group, an
NfL increase started at the presymptomatic stage (reaching
a pronounced z-score level of abnormality, with NfL effect
sizes in the GRN group larger than those of the MRI mea-
sures), followed by a pNfH increase with the onset of the
symptomatic stage (reaching a less pronounced z-score
level of abnormality). In the MAPT group, the NfL
increase (also starting at the presymptomatic stage) was,
however, slower and the pNfH increase appeared absent.
The MRI measures yielded stronger effect sizes than the
NfL increase in the MAPT group (see Fig 3D).

The combination of NfL and pNfH levels allows
stratification of FTD disease severity in the early
disease stages
NfL levels were significantly increased in both mildly
affected carriers (CDR plus NACC FTLD = 0.5 at base-
line visit, p = 0.004, r = 0.21) and definitely affected car-
riers (CDR plus NACC FTLD ≥ 1, p < 0.001, r = 0.68),
each compared with controls, whereas unaffected carriers
(CDR plus NACC FTLD = 0) did not show increased
NfL levels (ns., r = 0.03; Fig 4A). This finding was con-
firmed if NfL levels were corrected for the age-related
increase observed in controls. The age-corrected NfL z-
scores were significantly increased in both mildly affected
carriers (p = 0.017, r = 0.19) and definitely affected car-
riers (p < 0.001, r = 0.62), but not in unaffected carriers
(ns., r = 0.11; see Fig 4B). In contrast, pNfH levels were
increased in definitely affected carriers (p < 0.001,
r = 0.40), but not in unaffected (ns., r = 0.08) or mildly
affected carriers (ns., r = 0.13; see Fig 4C). Likewise, age-
corrected pNfH z-scores were significantly increased in
definitely affected carriers (p < 0.001, r = 0.23), but not
in unaffected (ns., r = 0.03) or mildly affected carriers
(ns., r = 0.08; see Fig 4D). Thus, already first mild clini-
cal manifestations were captured by the NfL increase,
whereas the definite clinical manifestation of FTD was
reflected by the combined increase of both NfL
and pNfH.

Add-on analysis suggested that neurofilament levels
in genetic FTD might also correlate with the extent of

motoneuron involvement, with differential capture of
upper versus lower motoneuron involvement by NfL and
pNfH (Supplement 3).

Both NfL and pNfH show high technical and
intra-individual biological stability
Technical stability was comparable for NfL and pNfH, as
demonstrated by similarly high within- and between-run
precision (see Table 2). Moreover, biological stability (ie,
intraindividual analyte stability) was comparable for NfL
and pNfH, as evidenced by high intraclass correlation
coefficients of both analytes in longitudinal measurements
(see Table 3, Fig 5A and B).

Neurofilament levels as disease-stage-
dependent outcome parameters for intervention
trials
We estimated sample sizes for intervention trials using the
reduction of neurofilament levels as outcome parameter,
taking into consideration the respective disease stage of
genetic FTD. Our estimates indicate that, to detect a ther-
apeutic effect size of 50% if using NfL levels, the required
total sample size would be 12 subjects at the symptomatic
stage (for 1:1 randomization, see Fig 5C for visualization
of a range of other possible therapeutic effect sizes) and
18 subjects at the conversion stage. For a more modest
effect size of 30%, 24 subjects at the symptomatic stage
(32 subjects for 3:1 randomization) and 46 subjects at the
conversion stage would be needed. If using pNfH levels as
outcome parameters at the symptomatic stage, 26 subjects
would be needed for an effect size of 50% and 66 subjects
for an effect size of 30%. For intervention trials aiming to
normalize the increased annualized change rates of NfL
during the conversion stage (instead of reducing its abso-
lute levels), our estimates indicate that 88 subjects would
be required.

Discussion
Stratification of the presymptomatic phase of genetic FTD
via objective and easily accessible molecular biomarkers is
warranted to pave the way for upcoming targeted treat-
ment trials. Leveraging the longitudinal multicenter
GENFI cohort, we here demonstrate a cascade of bio-
marker changes in presymptomatic genetic FTD, where
the NfL increase in blood precedes the hypothetical clini-
cal onset by 15 years, here concurring with the onset of
global brain atrophy, followed by a pNfH increase starting
close to clinical onset. Moreover, we demonstrate that
neurofilament levels allow demarcating the conversion
stage, for which the onset is marked by increased levels
and intra-individual change rates of NfL (but still normal
pNfH levels), and its completion with transition to the
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symptomatic stage by increased pNfH levels. Thus, NfL
and pNfH levels might provide disease stage-dependent
stratification biomarkers and, possibly, treatment outcome
biomarkers in genetic FTD.

Our study suggests an association of the onset of the
NfL increase to the conversion stage, given that both NfL
levels and NfL increase rates were increased in pres-
ymptomatic carriers converting to symptomatic disease,
but not in carriers remaining presymptomatic during lon-
gitudinal follow-up. The NfL increase preceded the mean
clinical onset observed in the symptomatic subjects of our
cohort by 15 years, thus even earlier than estimated in
previous studies.16 Moreover, as the NfL increase con-
curred with the onset of both global and frontal brain
atrophy (see Fig 3A), it might serve as an easily accessible
and early peripheral blood readout for incipient central-
nervous brain degeneration. Taken together, these findings
do not merely confirm blood NfL as a biomarker altered
already early in the course of genetic FTD,16,27 but pro-
vide a more fine-grained picture of its dynamics during
the presymptomatic phase of the disease.

Moreover, our study now complements these find-
ings on the dynamics of NfL with the dynamics of pNfH.
It associates the onset of the pNfH increase with the onset
of the symptomatic stage, as pNfH levels and pNfH
change rates were increased in symptomatic, but not yet
in presymptomatic or converting carriers. Correspond-
ingly, modeling of the biomarker cascade showed that the
pNfH increase occurred close to clinical onset. Thus, con-
firming and extending the earlier result of a cross-sectional
piloting study,14 our study suggests that the pNfH
increase might serve as a biomarker in the symptomatic
phase of genetic FTD, paralleling findings from other
multisystemic neurodegenerative diseases where pNfH
increases were linked to later disease stages.21 Thus, the
combination of both biomarkers – NfL and pNfH –

might be clinically relevant in the early and late stages of
neurodegenerative diseases.28

Although neurofilament increases are specific in that
they signal axonal decay rate (rather than merely
unspecific cell damage), their value in genetic FTD does
not primarily consist in their use as diagnostic biomarkers,
as neurofilament levels are increased in various neurode-
generative and non-neurodegenerative condi-
tions12,14,21,22,29–31 and as assessment of mutations and
altered disease-specific proteins already meets such a diag-
nostic purpose.32–34 For preparing future FTD interven-
tion trials, however, the biomarker value of neurofilament
levels rather consists in their potential use as stratification,
disease severity, and treatment response biomarkers. Par-
ticularly, our findings indicate that – as stratification bio-
markers – neurofilament levels might allow demarcating

the conversion stage, for which the onset is marked by
increased NfL levels and NfL change rates (but still nor-
mal pNfH levels) and its completion (with transition to
the symptomatic stage) by increased pNfH levels. The
combined use of NfL and pNfH levels as stratification
biomarkers might thus help optimizing the selection of eli-
gible mutation carriers for clinical trials, if one assumes
that future disease-modifying therapies might be most
effective in a window of opportunity immediately before
clinical onset. Such fully biomarker-based stratification
appears relevant as the age of onset in genetic FTD cur-
rently cannot be reliably predicted on the basis of the
familial age of onset.17,35 NfL might even quantitatively
capture proximity-to-onset as individual NfL levels of con-
verters continuously increased with proximity to the indi-
vidually observed clinical onset.

Neurofilament levels – and in particular NfL –

might moreover serve as biomarkers of disease severity in
the early phases of genetic FTD, as evidenced by their
increase with increasing CDR plus NACC FTLD levels in
these early phases. Whereas still normal at CDR stage
0, they progressively increase with the CDR stages 0.5
and >0.5. They then seem to reach a plateau, where these
increased levels are maintained, indicating a stable rate of
increased axonal decay at CDR stages >0.5 (see Figs 2C
and 3A). Our findings thus expand and specify previous
research reporting an association of NfL levels with FTD
disease severity.36 Moreover, our findings on the differen-
tial associations of NfL versus pNfH levels with upper ver-
sus lower motoneuron involvement (Supplement 3) –

although still preliminary given the small sample size – are
compatible with and extend previous findings suggesting
that both NfL and pNfH correlate with the degree of clin-
ical upper and lower motoneuron involvement,37 but with
pNfH levels correlating better with lower motoneuron
affection and NfL levels better with upper motoneuron
affection.37,38

Our study provides first sample size estimates for
future trials of disease-modifying treatments using neu-
rofilament levels as treatment response biomarkers. Intra-
individual biological variation is likely only a minimal
source of noise when using neurofilament blood levels as
outcome measure, as our study shows that levels of each
NfL and pNfH are highly stable within individuals, as
demonstrated by the high intraclass correlation coefficients
in mutation carriers, assessed over ≈12 months (see
Table 3), with biological stability not varying with age
(Supplement 4). Using neurofilament levels as outcome
parameters might thus help to reduce trial sample sizes in
comparison to clinical outcome measures. Indeed, our
sample size estimates for trials aiming to lower absolute
NfL blood levels in genetic FTD indicate that a total
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sample size of 12 subjects would suffice to detect thera-
peutic effect sizes of 50% (24 subjects for a more modest
therapeutic effect size of 30%), if using NfL at the symp-
tomatic stage. Importantly, our study demonstrates that
the sample size estimates need to be stage-specific: If using
NfL as outcome parameter at the conversion stage, a
higher sample size of 18 subjects would be required for
detecting the same therapeutic effect size, which is
explained by quantitatively smaller increase of NfL levels
at the conversion stage in comparison to the symptomatic
stage.

Thus, whereas our findings show a higher sensitivity
of NfL to capture the onset of the neurodegenerative pro-
cess at the conversion stage, both analytes might be
explored further in combination in future FTD natural
history and treatment trials, given (1) the significant
increase and high intraindividual stability of both NfL and
pNfH, (2) their potential to demarcate the onset and the
completion of the conversion phase, respectively, and
(3) the possibility that they might yield differential
responses and dynamics in response to therapeutic inter-
ventions or reflect different features of the disease process,
as suggested for other neurodegenerative diseases.39–41

Our study has several limitations. First, although we
demonstrate that the later increase of pNfH relative to
NfL levels is not due to differences in the technical and
biological stability of both analytes, this effect might in
part be explained by the smaller effect size of the pNfH
increase. Therefore, further studies are warranted to scruti-
nize the differential cellular mechanisms and dynamics
underlying NfL and pNfH increases in genetic FTD. A
recent report already provides a first hint to an underlying
biological difference: by the example of ALS, it suggests a
metabolic shift from NfH expression to less energy con-
suming NfL expression in neurons of neurodegenerative
disease patients.42 Such an altered metabolic profile of
neurons exposed to neurodegeneration, with altered
energy demands, might possibly explain the stage specific
increase in NfL versus pNfH, which we observe here. Sec-
ond, although the genetic subgroups of our study were
sufficiently powered to confirm at least one of the main
findings in each genetic subgroup (the increase of NfL
and pNfH levels from the presymptomatic to the symp-
tomatic stage, see Fig 1E and F), larger longitudinal
cohort sizes per gene would be required to run such sub-
group analyses also for the other findings, particularly for
the key findings related to change rates, the converting
subjects, and the temporal proximity of the biomarker
changes to the hypothetical clinical onset. Although our
study links the onset of the NfL increase clearly to the
beginning of the conversion stage and the pNfH increase
to the symptomatic stage of genetic FTD, first incipient

biological changes of pNfH levels during the conversion
stage might possibly be captured with a substantially larger
number of converters. Third, we used age as a proxy mea-
sure for the approaching symptom onset, like other stud-
ies, because no better proxy is currently available in
genetic FTD and because the known high variation of
onset age within families35 would render analyses based
on the average family onset age a possible source of uncer-
tainty or bias. Fourth, the proposed preliminary biomarker
cascade may require further gene-specific adjustments in
larger genetic subcohorts, given the quantitative and quali-
tative differences observed here in the neurodegenerative
process of each genetic group (see Fig 3B–D), also ideally
integrating additional biomarker modalities into the cas-
cade framework. Finally, our findings require validation in
independent longitudinal genetic FTD cohorts, like the
ALLFTD cohort.43

In conclusion, our longitudinal study shows that
blood NfL and pNfH provide stage-dependent stratifica-
tion and, potentially, treatment response biomarkers in
presymptomatic FTD, allowing demarcation of the con-
version stage. The proposed preliminary biomarker cas-
cade of NfL, pNfH, and volumetric MRI brain changes
might help pave the way towards a biomarker-based preci-
sion medicine approach to genetic FTD, supporting the
multimodal stratification of the presymptomatic phase.
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