36 research outputs found

    Long-Term Simultaneous Localization and Mapping in Dynamic Environments.

    Full text link
    One of the core competencies required for autonomous mobile robotics is the ability to use sensors to perceive the environment. From this noisy sensor data, the robot must build a representation of the environment and localize itself within this representation. This process, known as simultaneous localization and mapping (SLAM), is a prerequisite for almost all higher-level autonomous behavior in mobile robotics. By associating the robot's sensory observations as it moves through the environment, and by observing the robot's ego-motion through proprioceptive sensors, constraints are placed on the trajectory of the robot and the configuration of the environment. This results in a probabilistic optimization problem to find the most likely robot trajectory and environment configuration given all of the robot's previous sensory experience. SLAM has been well studied under the assumptions that the robot operates for a relatively short time period and that the environment is essentially static during operation. However, performing SLAM over long time periods while modeling the dynamic changes in the environment remains a challenge. The goal of this thesis is to extend the capabilities of SLAM to enable long-term autonomous operation in dynamic environments. The contribution of this thesis has three main components: First, we propose a framework for controlling the computational complexity of the SLAM optimization problem so that it does not grow unbounded with exploration time. Second, we present a method to learn visual feature descriptors that are more robust to changes in lighting, allowing for improved data association in dynamic environments. Finally, we use the proposed tools in SLAM systems that explicitly models the dynamics of the environment in the map by representing each location as a set of example views that capture how the location changes with time. We experimentally demonstrate that the proposed methods enable long-term SLAM in dynamic environments using a large, real-world vision and LIDAR dataset collected over the course of more than a year. This dataset captures a wide variety of dynamics: from short-term scene changes including moving people, cars, changing lighting, and weather conditions; to long-term dynamics including seasonal conditions and structural changes caused by construction.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111538/1/carlevar_1.pd

    Initial Results in Underwater Single Image Dehazing

    Full text link
    As light is transmitted from subject to observer it is absorbed and scattered by the medium it passes through. In mediums with large suspended particles, such as fog or turbid water, the effect of scattering can drastically decrease the quality of images. In this paper we present an algorithm for removing the effects of light scattering, referred to as dehazing, in underwater images. Our key contribution is to propose a simple, yet effective, prior that exploits the strong difference in attenuation between the three image color channels in water to estimate the depth of the scene. We then use this estimate to reduce the spatially varying effect of haze in the image. Our method works with a single image and does not require any specialized hardware or prior knowledge of the scene. As a by-product of the dehazing process, an up-to-scale depth map of the scene is produced. We present results over multiple real underwater images and over a controlled test set where the target distance and true colors are known.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86035/1/ncarlevaris-3.pd

    Conservative edge sparsification for graph SLAM node removal

    Full text link
    Abstract—This paper reports on optimization-based methods for producing a sparse, conservative approximation of the dense potentials induced by node marginalization in simultaneous localization and mapping (SLAM) factor graphs. The proposed methods start with a sparse, but overconfident, Chow-Liu tree approximation of the marginalization potential and then use optimization-based methods to adjust the approximation so that it is conservative subject to minimizing the Kullback-Leibler divergence (KLD) from the true marginalization potential. Re-sults are presented over multiple real-world SLAM graphs and show that the proposed methods enforce a conservative approxi-mation, while achieving low KLD from the true marginalization potential. I

    Generic Node Removal for Factor-Graph SLAM

    Full text link

    Image features for visual teach-and-repeat navigation in changing environments

    Get PDF
    We present an evaluation of standard image features in the context of long-term visual teach-and-repeat navigation of mobile robots, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that for long-term autonomous navigation, the viewpoint-, scale- and rotation- invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We combine detection and description components of different image extractors and evaluate their performance on five datasets collected by mobile vehicles in three different outdoor environments over the course of one year. Moreover, we propose a trainable feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the most promising results were achieved by the SpG/CNN and the STAR/GRIEF feature, which was slightly less robust, but faster to calculate

    Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes

    Full text link
    Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan - a recently introduced indoor RGB-D dataset designed for object instance re-localization - to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at waldjohannau.github.io/RIO10Comment: ECCV 2020, project website https://waldjohannau.github.io/RIO1

    Long-Term Simultaneous Localization and Mapping with Generic Linear Constraint Node Removal

    No full text
    Abstract — This paper reports on the use of generic linear constraint (GLC) node removal as a method to control the computational complexity of long-term simultaneous localization and mapping. We experimentally demonstrate that GLC provides a principled and flexible tool enabling a wide variety of complexity management schemes. Specifically, we consider two main classes: batch multi-session node removal, in which nodes are removed in a batch operation between mapping sessions, and online node removal, in which nodes are removed as the robot operates. Results are shown for 34.9 h of realworld indoor-outdoor data covering 147.4 km collected over 27 mapping sessions spanning a period of 15 months

    Generic Factor-Based Node Marginalization and Edge Sparsification for Pose-Graph SLAM

    No full text
    Abstract—This paper reports on a factor-based method for node marginalization in simultaneous localization and mapping (SLAM) pose-graphs. Node marginalization in a pose-graph induces fill-in and leads to computational challenges in performing inference. The proposed method is able to produce a new set of constraints over the elimination clique that can represent either the true marginalization, or a sparse approximation of the true marginalization using a Chow-Liu tree. The proposed algorithm improves upon existing methods in two key ways: First, it is not limited to strictly full-state relative-pose constraints and works equally well with other low-rank constraints such as those produced by monocular vision. Second, the new factors are produced in a way that accounts for measurement correlation, a problem ignored in other methods that rely upon measurement composition. We evaluate the proposed method over several realworld SLAM graphs and show that it outperforms other stateof-the-art methods in terms of Kullback-Leibler divergence. I
    corecore