407 research outputs found

    Quasi-homologous spherically symmetric branes and their symmetry breaking

    Full text link
    We revisit the dynamical system based approach of spherically symmetric vacuum braneworlds, pointing out and studying the existence of a transcritical bifurcation as the dark pressure parameter changes its sign, we analyze some consequences of not discard the brane cosmological constant. For instance, it is noteworthy that the existence of an isothermal state equation between the dark fluid parameters cannot be obtained via the requirement of a quasi-homologous symmetry of the vacuum.Comment: 20 pages, 12 figures. To appear in EPJ

    Solution for a local straight cosmic string in the braneworld gravity

    Get PDF
    In this work we deal with the spacetime shaped by a straight cosmic string, emerging from local gauge theories, in the braneworld gravity context. We search for physical consequences of string features due to the modified gravitational scenario encoded in the projected gravitational equations. It is shown that cosmic strings in braneworld gravity may present significant differences when compared to the general relativity predictions since its linear density is modified and the deficit angle produced by the cosmic string is attenuated. Furthermore, the existence of cosmic strings in that scenario requires a strong restriction to the braneworld tension: λ≥3×10−17\lambda \geq 3 \times 10^{-17}, in Planck units.Comment: 7 pages, 3 figure

    Static Domain Wall in the Braneworld gravity

    Full text link
    In this paper we consider a static domain wall inside a 3-brane. Differently of the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. It is also shown the behavior of the domain wall gravitational field in the newtonian limit.Comment: 11 pages, no figures, accepted for publication in EPJ

    Testing the gravitational field generated by a quantum superposition

    Get PDF
    What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to witness whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability

    Combining Intravital Fluorescent Microscopy (IVFM) with Genetic Models to Study Engraftment Dynamics of Hematopoietic Cells to Bone Marrow Niches

    Get PDF
    Increasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment

    Nonequilibrium Quantum Thermodynamics of a Particle Trapped in a Controllable Time-Varying Potential

    Get PDF
    Many advanced quantum techniques feature non-Gaussian dynamics, and the ability to manipulate the system in that domain is the next stage in many experiments. One example of meaningful non-Gaussian dynamics is that of a double-well potential. Here we study the dynamics of a levitated nanoparticle undergoing the transition from a harmonic potential to a double well in a realistic setting, subjected to both thermalization and localization. We characterize the dynamics of the nanoparticle from a thermodynamic point of view, investigating the dynamics with the Wehrl entropy production and its rates. Furthermore, we investigate coupling regimes where the the quantum effect and thermal effect are of the same magnitude, and look at suitable squeezing of the initial state that provides the maximum coherence. The effects and the competitions of the unitary and the dissipative parts onto the system are demonstrated. We quantify the requirements to relate our results to a bonafide experiment with the presence of the environment, and discuss the experimental interpretations of our results in the end

    Segmentation of Vascular Structures and Hematopoietic Cells in 3-D Microscopy Images and Quantitative Analysis

    Get PDF
    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery

    Airway driving pressure and lung stress in ARDS patients

    Get PDF
    Background: Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). Methods: One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. Results: The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r 2 = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r 2 = 0.581 p < 0.0001 and r 2 = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Conclusions: Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings

    The subplacenta of the red-rumped agouti (Dasyprocta leporina L)

    Get PDF
    BACKGROUND: Hystricognath rodents have a lobed placenta, comprising labyrinthine exchange areas and interlobular trophoblast. These correspond to the labyrinthine and spongy zones of other rodent placentae. Beneath them, however, is a structure unique to hystricognath rodents called the subplacenta. We here describe the subplacenta of the red-rumped agouti and examine the possible functional correlates of this structure. METHODS: Placentae were collected from early in midgestation to near term of pregnancy and examined by standard histological techniques, immunohistochemistry and transmission electron microscopy. In addition, to study the microvasculature of the subplacenta, vessel casts were inspected by scanning electron microscopy RESULTS: In the subplacenta, lamellae of connective tissue support a layer of mononuclear cytotrophoblast cells. Beneath this is found syncytiotrophoblast. Clusters of multinuclear giant cells occur in the transition zone between the subplacenta and decidua. There are prominent intercellular spaces between the cytotrophoblast cells. The basal membrane of these cells is often close to fetal blood vessels. The syncytiotrophoblast surrounds an extensive system of lacunae. Microvilli project into these lacunae from the plasma membrane of the syncytiotrophoblast. The syncytial cytoplasm contains electron-dense granules. This is probably the amylase-resistant PAS-positive material identified by histochemistry. The subplacenta is supplied entirely from the fetal circulation. Within it the vessels pursue a tortuous course with sinusoidal dilatations and constrictions. CONCLUSION: The functions that have been attributed to the subplacenta include hormone production. Our findings are consistent with this interpretation, but suggest that hormone secretion is directed towards the fetal circulation rather than the maternal tissues
    • …
    corecore