49 research outputs found

    Disentangling the causes of temporal variation in the opportunity for sexual selection

    Get PDF
    In principle, temporal fluctuations in the potential for sexual selection can be estimated as changes in intrasexual variance in reproductive success (i.e. the opportunity for selection). However, we know little about how opportunity measures vary over time, and the extent to which such dynamics are affected by stochasticity. We use published mating data from multiple species to investigate temporal variation in the opportunity for sexual selection. First, we show that the opportunity for precopulatory sexual selection typically declines over successive days in both sexes and shorter sampling periods lead to substantial overestimates. Second, by utilising randomised null models, we also find that these dynamics are largely explained by an accumulation of random matings, but that intrasexual competition may slow temporal declines. Third, using data from a red junglefowl (Gallus gallus) population, we show that declines in precopulatory measures over a breeding period were mirrored by declines in the opportunity for both postcopulatory and total sexual selection. Collectively, we show that variance-based metrics of selection change rapidly, are highly sensitive to sampling durations, and likely lead to substantial misinterpretation if used as indicators of sexual selection. However, simulations can begin to disentangle stochastic variation from biological mechanisms

    Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae)

    Get PDF
    YesIntroduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.This work was supported by the University of Konstanz (Excellence Initiative Independent Research Startup Grant to MS, http://www.exzellenz.uni-konstanz.de/en/); the Swiss National Science Foundation (grant numbers CRSI33_127155 and Sinergia AVE 31003A_140917, http://www.snf.ch/en/Pages/default.aspx); the University of Zurich (University Research Priority Program Evolution in Action, http://www.uzh.ch/research/priorityprograms/university_en.html); and the Human Frontiers Science Program (Young Investigator Award to KKS, http://www.hfsp.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition

    Get PDF
    Studies of birds have made a fundamental contribution to elucidating sperm competition processes, experimentally demonstrating the role of individual mechanisms in competitive fertilization. However, the relative importance of these mechanisms and the way in which they interact under natural conditions remain largely unexplored. Here, we conduct a detailed behavioural study of freely mating replicate groups of red junglefowl, Gallus gallus, to predict the probability that competing males fertilize individual eggs over the course of 10-day trials. Remating frequently with a female and mating last increased a male's probability of fertilization, but only for eggs ovulated in the last days of a trial. Conversely, older males, and those mating with more polyandrous females, had consistently lower fertilization success. Similarly, resistance to a male's mating attempts, particularly by younger females, reduced fertilization probability. After considering these factors, male social status, partner relatedness and the estimated state of male extragonadal sperm reserves did not predict sperm competition outcomes. These results shed new light on sperm competition dynamics in taxa such as birds, with prolonged female sperm storage and staggered fertilizations. This article is part of the theme issue 'Fifty years of sperm competition'

    Multiuser Cognitive Radio Networks: An Information Theoretic Perspective

    Full text link
    Achievable rate regions and outer bounds are derived for three-user interference channels where the transmitters cooperate in a unidirectional manner via a noncausal message-sharing mechanism. The three-user channel facilitates different ways of message-sharing between the primary and secondary (or cognitive) transmitters. Three natural extensions of unidirectional message-sharing from two users to three users are introduced: (i) Cumulative message sharing; (ii) primary-only message sharing; and (iii) cognitive-only message sharing. To emphasize the notion of interference management, channels are classified based on different rate-splitting strategies at the transmitters. Standard techniques, superposition coding and Gel'fand-Pinsker's binning principle, are employed to derive an achievable rate region for each of the cognitive interference channels. Simulation results for the Gaussian channel case are presented; they enable visual comparison of the achievable rate regions for different message-sharing schemes along with the outer bounds. These results also provide useful insights into the effect of rate-splitting at the transmitters, which aids in better interference management at the receivers.Comment: 50 pages, 15 figures, submitted to IEEE Transactions on Information Theor

    Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana.

    Get PDF
    BACKGROUND: In the Brassicaceae, the early stages of compatible pollen-stigma interactions are tightly controlled with early checkpoints regulating pollen adhesion, hydration and germination, and pollen tube entry into the stigmatic surface. However, the early signalling events in the stigma which trigger these compatible interactions remain unknown. RESULTS: A set of stigma-expressed pseudokinase genes, termed BRASSIKINs (BKNs), were identified and found to be present in only core Brassicaceae genomes. In Arabidopsis thaliana Col-0, BKN1 displayed stigma-specific expression while the BKN2 gene was expressed in other tissues as well. CRISPR deletion mutations were generated for the two tandemly linked BKNs, and very mild hydration defects were observed for wild-type Col-0 pollen when placed on the bkn1/2 mutant stigmas. In further analyses, the predominant transcript for the stigma-specific BKN1 was found to have a premature stop codon in the Col-0 ecotype, but a survey of the 1001 Arabidopsis genomes uncovered three ecotypes that encoded a full-length BKN1 protein. Furthermore, phylogenetic analyses identified intact BKN1 orthologues in the closely related outcrossing Arabidopsis species, A. lyrata and A. halleri. Finally, the BKN pseudokinases were found to be plasma-membrane localized through the dual lipid modification of myristoylation and palmitoylation, and this localization would be consistent with a role in signaling complexes. CONCLUSION: In this study, we have characterized the novel Brassicaceae-specific family of BKN pseudokinase genes, and examined the function of BKN1 and BKN2 in the context of pollen-stigma interactions in A. thaliana Col-0. Additionally, premature stop codons were identified in the predicted stigma specific BKN1 gene in a number of the 1001 A. thaliana ecotype genomes, and this was in contrast to the out-crossing Arabidopsis species which carried intact copies of BKN1. Thus, understanding the function of BKN1 in other Brassicaceae species will be a key direction for future studies
    corecore