769 research outputs found

    Amplitude `Higgs' mode in 2H-NbSe2 Superconductor

    Get PDF
    We report experimental evidences for the observation of the superconducting amplitude mode, so-called `Higgs' mode in the charge density wave superconductor 2H-NbSe2 using Raman scattering. By comparing 2H-NbSe2 and its iso-structural partner 2H-NbS2 which shows superconductivity but lacks the charge density wave order, we demonstrate that the superconducting mode in 2H-NbSe2 owes its spectral weight to the presence of the coexisting charge density wave order. In addition, temperature dependent measurements in 2H-NbSe2 show a full spectral weight transfer from the charge density wave mode to the superconducting mode upon entering the superconducting phase. Both observations are fully consistent with a superconducting amplitude mode or Higgs mode.Comment: Accepted for publication in Phys. Rev. B Rapid Com. 5 pages with 3 figure

    First-Order Insulator-to-Metal Mott Transition in the Paramagnetic 3D System GaTa4Se8

    Get PDF
    The nature of the Mott transition in the absence of any symmetry braking remains a matter of debate. We study the correlation-driven insulator-to-metal transition in the prototypical 3D Mott system GaTa4Se8, as a function of temperature and applied pressure. We report novel experiments on single crystals, which demonstrate that the transition is of first order and follows from the coexistence of two states, one insulating and one metallic, that we toggle with a small bias current. We provide support for our findings by contrasting the experimental data with calculations that combine local density approximation with dynamical mean-field theory, which are in very good agreement.Comment: 5 pages and 4 figures. Supplemental material: 2 pages, 2 figure

    Domain size effects on the dynamics of a charge density wave in 1T-TaS2

    Full text link
    Recent experiments have shown that the high temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS2 can be photoinduced from the lower temperature, nearly commensurate (NC) CDW state. Here we report a time-resolved x-ray diffraction study of the growth process of the photoinduced I-CDW domains. The layered nature of the material results in a marked anisotropy in the size of the photoinduced domains of the I-phase. These are found to grow self-similarly, their shape remaining unchanged throughout the growth process. The photoinduced dynamics of the newly formed I-CDW phase was probed at various stages of the growth process using a double pump scheme, where a first pump creates I-CDW domains and a second pump excites the newly formed I-CDW state. We observe larger magnitudes of the coherently excited I-CDW amplitude mode in smaller domains, which suggests that the incommensurate lattice distortion is less stable for smaller domain sizes.Comment: 8 pages, 8 figure

    Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS 2 and 2H-TaSe 2

    Get PDF
    We present measurements of the superconducting and charge density wave critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2H-TaSe2 and 2H-TaS2. Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2H-TaS2 and 8.2 K at 23 GPa in 2H-TaSe2. We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases coexisting with superconductivity within our full pressure range.Comment: Published in Phys. Rev B 93, 184512 (2016

    Scanning tunneling spectroscopy of layers of superconducting 2H-TaSe2_\textbf{2}: Evidence for a zero bias anomaly in single layers

    Get PDF
    We report a characterization of surfaces of the dichalcogenide TaSe2_2 using scanning tunneling microscopy and spectroscopy (STM/S) at 150 mK. When the top layer has the 2H structure and the layer immediately below the 1T structure, we find a singular spatial dependence of the tunneling conductance below 1 K, changing from a zero bias peak on top of Se atoms to a gap in between Se atoms. The zero bias peak is additionally modulated by the commensurate 3a0Ă—3a03a_0 \times 3a_0 charge density wave of 2H-TaSe2_2. Multilayers of 2H-TaSe2_2 show a spatially homogeneous superconducting gap with a critical temperature also of 1 K. We discuss possible origins for the peculiar tunneling conductance in single layers.Comment: 10 pages, 10 figure

    Ultrafast filling of an electronic pseudogap in an incommensurate crystal

    Full text link
    We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate distortion. Nonetheless, the spectra display a temperature dependent pseudogap instead of quasiparticles crossing. The sudden photoexcitation at 50 K induces a partial filling of the electronic pseudogap within less than 80 fs. The electronic energy flows into the lattice modes on a comparable timescale. We attribute this surprisingly short timescale to a very strong electron-phonon coupling to the incommensurate distortion. This result sheds light on the electronic localization arising in aperiodic structures and quasicrystals

    Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease.

    Get PDF
    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD.This study was supported by funds obtained from The Evelyn Trust, Crohn’s in Childhood Research Association (CICRA) and Crohn’s and Colitis in Childhood (3Cs) charity. J.K. was funded by a PhD studentship from CICRA. Funding for E.C. was provided by the Deutsche Forschungsgemeinschaft (Grant CA226/4-3) and Interne Forschungsförderung Essen (IFORES).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/mi.2015.8

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure
    • …
    corecore