60 research outputs found

    Automated Strategies in Multimodal and Multidimensional Ultrasound Image-based Diagnosis

    Get PDF
    Medical ultrasonography is an effective technique in traditional anatomical and functional diagnosis. However, it requires the visual examination by experienced clinicians, which is a laborious, time consuming and highly subjective procedure. Computer-aided diagnosis (CADx) have been extensively used in clinical practice to support the interpretation of images; nevertheless, current ultrasound CADx still entails a substantial user-dependency and are unable to extract image data for prediction modelling. The aim of this thesis is to propose a set of fully automated strategies to overcome the limitations of ultrasound CADx. These strategies are addressed to multiple modalities (B-Mode, Contrast-Enhanced Ultrasound-CEUS, Power Doppler-PDUS and Acoustic Angiography-AA) and dimensions (2-D and 3-D imaging). The enabling techniques presented in this work are designed, developed and quantitively validated to efficiently improve the overall patients’ diagnosis. This work is subdivided in 2 macro-sections: in the first part, two fully automated algorithms for the reliable quantification of 2-D B-Mode ultrasound skeletal muscle architecture and morphology are proposed. In the second part, two fully automated algorithms for the objective assessment and characterization of tumors’ vasculature in 3-D CEUS and PDUS thyroid tumors and preclinical AA cancer growth are presented. In the first part, the MUSA (Muscle UltraSound Analysis) algorithm is designed to measure the muscle thickness, the fascicles length and the pennation angle; the TRAMA (TRAnsversal Muscle Analysis) algorithm is proposed to extract and analyze the Visible Cross-Sectional Area (VCSA). MUSA and TRAMA algorithms have been validated on two datasets of 200 images; automatic measurements have been compared with expert operators’ manual measurements. A preliminary statistical analysis was performed to prove the ability of texture analysis on automatic VCSA in the distinction between healthy and pathological muscles. In the second part, quantitative assessment on tumor vasculature is proposed in two automated algorithms for the objective characterization of 3-D CEUS/Power Doppler thyroid nodules and the evolution study of fibrosarcoma invasion in preclinical 3-D AA imaging. Vasculature analysis relies on the quantification of architecture and vessels tortuosity. Vascular features obtained from CEUS and PDUS images of 20 thyroid nodules (10 benign, 10 malignant) have been used in a multivariate statistical analysis supported by histopathological results. Vasculature parametric maps of implanted fibrosarcoma are extracted from 8 rats investigated with 3-D AA along four time points (TPs), in control and tumors areas; results have been compared with manual previous findings in a longitudinal tumor growth study. Performance of MUSA and TRAMA algorithms results in 100% segmentation success rate. Absolute difference between manual and automatic measurements is below 2% for the muscle thickness and 4% for the VCSA (values between 5-10% are acceptable in clinical practice), suggesting that automatic and manual measurements can be used interchangeably. The texture features extraction on the automatic VCSAs reveals that texture descriptors can distinguish healthy from pathological muscles with a 100% success rate for all the four muscles. Vascular features extracted of 20 thyroid nodules in 3-D CEUS and PDUS volumes can be used to distinguish benign from malignant tumors with 100% success rate for both ultrasound techniques. Malignant tumors present higher values of architecture and tortuosity descriptors; 3-D CEUS and PDUS imaging present the same accuracy in the differentiation between benign and malignant nodules. Vascular parametric maps extracted from the 8 rats along the 4 TPs in 3-D AA imaging show that parameters extracted from the control area are statistically different compared to the ones within the tumor volume. Tumor angiogenetic vessels present a smaller diameter and higher tortuosity. Tumor evolution is characterized by the significant vascular trees growth and a constant value of vessel diameter along the four TPs, confirming the previous findings. In conclusion, the proposed automated strategies are highly performant in segmentation, features extraction, muscle disease detection and tumor vascular characterization. These techniques can be extended in the investigation of other organs, diseases and embedded in ultrasound CADx, providing a user-independent reliable diagnosis

    On the Relationship between Dynamic Contrast-Enhanced Ultrasound Parameters and the Underlying Vascular Architecture Extracted from Acoustic Angiography

    Get PDF
    Dynamic contrast-enhanced ultrasound (DCE-US) has been proposed as a powerful tool for cancer diagnosis by estimation of perfusion and dispersion parameters reflecting angiogenic vascular changes. This work was aimed at identifying which vascular features are reflected by the estimated perfusion and dispersion parameters through comparison with acoustic angiography (AA). AA is a high-resolution technique that allows quantification of vascular morphology. Three-dimensional AA and 2-D DCE-US bolus acquisitions were used to monitor the growth of fibrosarcoma tumors in nine rats. AA-derived vascular properties were analyzed along with DCE-US perfusion and dispersion to investigate the differences between tumor and control and their evolution in time. AA-derived microvascular density and DCE-US perfusion exhibited good agreement, confirmed by their spatial distributions. No vascular feature was correlated with dispersion. Yet, dispersion provided better cancer classification than perfusion. We therefore hypothesize that dispersion characterizes vessels that are smaller than those visible with AA

    Greater neural adaptations following high- vs. low-load resistance training

    Get PDF
    We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 +/= 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13) or low-load (30% 1RM; n = 13) resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC) strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA) and electromyographic (EMG) amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10-100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the disparate increases in muscle strength despite similar hypertrophy following high- and low-load training programs.Peer reviewedHealth and Human PerformanceNutritional Science

    Kahi design

    No full text
    Proyecto de Título PublicistaEs una empresa que comienza con la idea de dos ingenieros civiles de la Universidad Adolfo Ibáñez de emprender diseñando y fabricando muebles con madera reciclada. En un principio solo se fabrican muebles a pedidos de particulares, orientados principalmente a ambientes exteriores como terrazas, patios, restaurantes y decoración de espacios. Es en el año 2016 cuando deciden patentar la marca y legalizar su empresa, comenzando oficialmente las compras de maquinaria y la producción a mayor escala de toda variedad de muebles. Su gran trabajo y dedicación les permitió poco a poco ganarse un puesto importante en el mercado de los muebles ecológicos, y luego de una gran promoción en redes sociales y el boca a boca, sus clientes y pedidos fueron aumentando, llegando incluso a recibir proyectos de grandes empresas como FOX, Heinz y de figuras públicas como Pangal Andrade, ampliando su gama de productos y materiales utilizados. De pasar a utilizar solamente madera reciclada para los amigos y conocidos, pasaron a incluir roble de demolición, fierro y hormigón para satisfacer la demanda de sus nuevos clientes, generando mayores ingresos, pero añadiendo ciertas dificultades de producción, para poder obtener estos nuevos materiales
    corecore