149 research outputs found

    Association of the mtDNA m.4171C>A/MT-ND1 mutation with both optic neuropathy and bilateral brainstem lesions

    Get PDF
    Background: An increasing number of mitochondrial DNA (mtDNA) mutations, mainly in complex I genes, have been associated with variably overlapping phenotypes of Leber’s hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with stroke-like episodes (MELAS) and Leigh syndrome (LS). We here describe the first case in which the m.4171C>A/MT-ND1 mutation, previously reported only in association with LHON, leads also to a Leigh-like phenotype. Case presentation: A 16-year-old male suffered subacute visual loss and recurrent vomiting and vertigo associated with bilateral brainstem lesions affecting the vestibular nuclei. His mother and one sister also presented subacute visual loss compatible with LHON. Sequencing of the entire mtDNA revealed the homoplasmic m.4171C>A/MT-ND1 mutation, previously associated with pure LHON, on a haplogroup H background. Three additional non-synonymous homoplasmic transitions affecting ND2 (m.4705T>C/MT-ND2 and m.5263C>T/MT-ND2) and ND6 (m.14180T>C/MT-ND6) subunits, well recognized as polymorphisms in other mtDNA haplogroups but never found on the haplogroup H background, were also present. Conclusion: This case widens the phenotypic expression of the rare m.4171C>A/MT-ND1 LHON mutation, which may also lead to Leigh-like brainstem lesions, and indicates that the co-occurrence of other ND non-synonymous variants, found outside of their usual mtDNA backgrounds, may have increased the pathogenic potential of the primary LHON mutation

    Acute Effects of Nicotine Amplify Accumbal Neural Responses during Nicotine-Taking Behavior and Nicotine-Paired Environmental Cues

    Get PDF
    Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA

    New technologies for examining neuronal ensembles in drug addiction and fear

    Get PDF
    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear

    The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    Get PDF
    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC

    Impact of the Mitochondrial Genetic Background in Complex III Deficiency

    Get PDF
    BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G) in the cytochrome b (MT-CYB) gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders

    Analysis of Mitochondrial DNA Sequences in Childhood Encephalomyopathies Reveals New Disease-Associated Variants

    Get PDF
    BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype. This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide

    Mitochondrial Diabetes in Children: Seek and You Will Find It

    Get PDF
    Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants

    Shift in the Intrinsic Excitability of Medial Prefrontal Cortex Neurons following Training in Impulse Control and Cued-Responding Tasks

    Get PDF
    Impulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC). Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes. To that end, we trained rats to obtain a food reward in a response inhibition task by withhold responding on a lever until they were signaled to respond. We then measured excitability, using whole-cell patch clamp recordings in brain slices, by quantifying action potentials generated by the injection of depolarizing current steps. Training in this task depressed the excitability of layer V pyramidal neurons of the prelimbic, but not infralimbic, region of the mPFC relative to behavioral controls. This decrease in maximum spiking frequency was significantly correlated with performance on the final session of the task. This change in intrinsic excitability may represent a homeostatic mechanism counterbalancing increased excitatory synaptic inputs onto those neurons in trained rats. Interestingly, subjects trained with a cue that predicted imminent reward availability had increased excitability in infralimbic, but not the prelimbic, pyramidal neurons. This dissociation suggests that both prelimbic and infralimbic neurons are involved in directing action, but specialized for different types of information, inhibitory or anticipatory, respectively

    Sugar Overconsumption during Adolescence Selectively Alters Motivation and Reward Function in Adult Rats

    Get PDF
    International audienceBACKGROUND:There has been a dramatic escalation in sugar intake in the last few decades, most strikingly observed in the adolescent population. Sugar overconsumption has been associated with several adverse health consequences, including obesity and diabetes. Very little is known, however, about the impact of sugar overconsumption on mental health in general, and on reward-related behavioral disorders in particular. This study examined in rats the effects of unlimited access to sucrose during adolescence on the motivation for natural and pharmacological rewards in adulthood.METHODOLOGY/PRINCIPAL FINDINGS:Adolescent rats had free access to 5% sucrose or water from postnatal day 30 to 46. The control group had access to water only. In adulthood, rats were tested for self-administration of saccharin (sweet), maltodextrin (non-sweet), and cocaine (a potent drug of abuse) using fixed- and progressive-ratio schedules, and a concentration-response curve for each substance. Adult rats, exposed or not exposed to sucrose, were tested for saccharin self-administration later in life to verify the specificity of adolescence for the sugar effects. Sugar overconsumption during adolescence, but not during adulthood, reduced the subsequent motivation for saccharin and maltodextrin, but not cocaine. This selective decrease in motivation is more likely due to changes in brain reward processing than changes in gustatory perception.CONCLUSIONS/SIGNIFICANCE:Sugar overconsumption induces a developmental stage-specific chronic depression in reward processing that may contribute to an increase in the vulnerability to reward-related psychiatric disorders

    The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies

    Get PDF
    Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds
    corecore