101 research outputs found

    The CACNA1B R1389H variant is not associated with myoclonus-dystonia in a large European multicentric cohort.

    Get PDF
    Myoclonus-dystonia (M-D) is a very rare movement disorder, caused in ∼30-50% of cases by mutations in SGCE. The CACNA1B variant c.4166G>A; (p.R1389H) was recently reported as the likely causative mutation in a single 3-generation Dutch pedigree with five subjects affected by a unique dominant M-D syndrome and cardiac arrhythmias. In an attempt to replicate this finding, we assessed by direct sequencing the frequency of CACNA1B c.4166G>A; (p.R1389H) in a cohort of 520 M-D cases, in which SGCE mutations had been previously excluded. A total of 146 cases (28%) had a positive family history of M-D. The frequency of the variant was also assessed in 489 neurologically healthy controls and in publicly available data sets of genetic variation (1000 Genomes, Exome Variant Server and Exome Aggregation Consortium). The variant was detected in a single sporadic case with M-D, but in none of the 146 probands with familial M-D. Overall, the variant was present at comparable frequencies in M-D cases (1 out of 520; 0.19%) and healthy controls (1 out of 489; 0.2%). A similar frequency of the variant was also reported in all publicly available databases. These results do not support a causal association between the CACNA1B c.4166G>A; (p.R1389H) variant and M-D

    Frequency and phenotypic spectrum of KMT2B dystonia in childhood: A single‐center cohort study

    Get PDF
    Background: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. Objective: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged less than 18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. Methods: Whole-exome sequencing or customized gene panels were used to screen a cohort of sixty-five patients who had previously tested negative for all other known dystonia-associated genes. Results: We identified fourteen patients (21.5%) carrying KMT2B variants, of which one was classified as a Variant of Unknown Significance (VUS). We also identified two additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudo-cranial generalization. Eight patients underwent pallidal Deep Brain Stimulation with a median decrease of BFMDRS-M score of 38.5% in the long term. We also report four asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. Conclusions: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to Deep Brain Stimulation is characteristic of DYT-KMT2B dystonia

    De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions.

    Get PDF
    Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of childhood-onset chorea and characteristic brain MRI showing symmetrical bilateral striatal lesions. All individuals were identified to carry a de novo heterozygous mutation in PDE10A (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs. PDE10A contributes to the regulation of the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both substitutions affect highly conserved amino acids located in the regulatory GAF-B domain, which, by binding to cAMP, stimulates the activity of the PDE10A catalytic domain. In silico modeling showed that the altered residues are located deep in the binding pocket, where they are likely to alter cAMP binding properties. In vitro functional studies showed that neither substitution affects the basal PDE10A activity, but they severely disrupt the stimulatory effect mediated by cAMP binding to the GAF-B domain. The identification of PDE10A mutations as a cause of chorea further motivates the study of cAMP signaling in MSNs and highlights the crucial role of striatal cAMP signaling in the regulation of basal ganglia circuitry. Pharmacological modulation of this pathway could offer promising etiologically targeted treatments for chorea and other hyperkinetic movement disorders

    Adult-onset KMT2B-related dystonia

    Get PDF
    KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features

    The genetics and neuropathology of frontotemporal lobar degeneration

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition

    Movement disorders in metabolic diseases in adulthood

    No full text
    Introduction Inborn errors of metabolism (IEMs) are a wide and variegate, mostly recessively inherited group of multi-systemic diseases that often involve the central nervous system (CNS). Onset of symptoms in childhood or adolescence is generally the rule, but presentation in adulthood is not exceptional and should be taken into consideration in the differential diagnosis even in adult patients presenting with complex movement disorders. Neurologists may face two scenarios in metabolic disorders of adulthood: late-onset metabolic diseases sometimes manifesting with neurological symptoms, including movement disorders or movement disorders developing later in the context of an earlier-onset and previously diagnosed IEM. The latter circumstance is becoming increasingly frequent as early diagnosis, improvement of standards of care for patients diagnosed in early childhood, and a multidisciplinary approach in the treatment of these disorders, as well as the availability of new therapies, has considerably prolonged the life expectancy of these patients, so that several long-term neurological manifestations due to CNS involvement, including movement disorders, are now being observed with increasing frequency. Movement disorders in IEMs are clinically heterogeneous and include a wide spectrum of manifestations, from dystonia to ataxia, with different patterns and course; for this reason, considering metabolic diseases in the differential diagnosis is of primary importance in adults, especially when presenting with signs and symptoms of involvement of other organs. Most importantly, such diagnoses should not be missed as some of these disorders (for example, Wilson\u2019s disease) are treatable and some of the movement disorders themselves can also be treated symptomatically
    corecore