682 research outputs found

    Autoimmune alternating hyper- and hypo-thyroidism: a rare condition in pediatrics

    Get PDF
    Alternating between hyper- and hypo-thyroidism may be explained by the simultaneous presence of both types of TSH receptor autoantibodies (TRAbs) - thyroid stimulating autoantibodies (TSAbs) and TSH blocking autoantibodies (TBAbs). It is a very rare condition, particulary in the pediatric age. The clinical state of these patients is determined by the balance between TSAbs and TBAbs and can change over time. Many mechanisms may be involved in fluctuating thyroid function: hormonal supplementation, antithyroid drugs and levels of TSAbs and TBAbs. Frequent dose adjustments are needed in order to achieve euthyroidism. A definitive therapy may be necessary to avoid switches in thyroid function and frequent need of therapeutic changes. We describe an immune-mediated case of oscillating thyroid function in a 13-year-old adolescent. After a short period of levothyroxine treatment, the patient switched to a hyperthyroid state that was only controlled by adding an antithyroid drug. LEARNING POINTS: Autoimmune alternating hypo- and hyper-thyroidism is a highly uncommon condition in the pediatric age.It may be due to the simultaneous presence of both TSAbs and TBAbs, whose activity may be estimated in vitro through bioassays.The clinical state of these patients is determined by the balance between TSAbs and TBAbs and can change over time.The management of this condition is challenging, and three therapeutic options could be considered: I-131 ablation, thyroidectomy or pharmacological treatment (single or double therapy).Therapeutic decisions should be taken according to clinical manifestations and thyroid function tests, independent of the bioassays results.A definitive treatment might be considered due to the frequent switches in thyroid function and the need for close monitoring of pharmacological treatment. A definitive treatment might be considered due to the frequent switches in thyroid function and the need for close monitoring of pharmacological treatment.info:eu-repo/semantics/publishedVersio

    Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on <it>Xenopus </it>and chicken.</p> <p>Results</p> <p>The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in <it>Xenopus </it>and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from <it>Xenopus </it>to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in <it>Xenopus </it>and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors.</p> <p>Conclusions</p> <p>The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that genes of the PTH family appeared at approximately the same time during the vertebrate radiation and evolved via gene duplication/deletion events. PTH-L was lost from the genome of eutherian mammals and PTH, which has a paracrine distribution in lower vertebrates, became the product of a specific endocrine tissue in Amphibia, the parathyroid gland. The PTHrP gene organisation diverged and became more complex in vertebrates and retained its widespread tissue distribution which is congruent with its paracrine nature.</p

    Evaluation of matrix metalloproteinases-2 and-9 in cats under bone demineralization secondary to induced thyrotoxicosis

    Get PDF
    Significant increase of activity of active forms of matrix metalloproteinases -2 and -9 in cats under induced thyrotoxicosis and bone demineralization was observed. Pro and intermediated forms of matrix metalloproteinases -2 and -9 increased at 14 days of hormonal treatment, followed by decrease tendency. A negative correlation between active forms of matrix metalloproteinases -2 and -9 and bone mineral density of radius distal extremity was also observed. The results suggest an increase of collagen matrix degradation secondary to high levels of thyroid hormones.6051053106

    Effects of terlipressin as early treatment for protection of brain in a model of haemorrhagic shock

    Get PDF
    Introduction: We investigated whether treatment with terlipressin during recovery from hypotension due to haemorrhagic shock (HS) is effective in restoring cerebral perfusion pressure (CPP) and brain tissue markers of water balance, oxidative stress and apoptosis. Methods: In this randomised controlled study, animals undergoing HS (target mean arterial pressure (MAP) 40 mmHg for 30 minutes) were randomised to receive lactated Ringer’s solution (LR group; n =14; volume equal to three times the volume bled), terlipressin (TERLI group; n =14; 2-mg bolus), no treatment (HAEMO group; n =12) or sham (n =6). CPP, systemic haemodynamics (thermodilution technique) and blood gas analyses were registered at baseline, shock and 5, 30, 60 (T60), 90 and 120 minutes after treatment (T120). After the animals were killed, brain tissue samples were obtained to measure markers of water balance (aquaporin-4 (AQP4)), Na+-K+-2Cl− co-transporter (NKCC1)), oxidative stress (thiobarbituric acid reactive substances (TBARS) and manganese superoxide dismutase (MnSOD)) and apoptotic damage (Bcl-x and Bax). Results: Despite the HS-induced decrease in cardiac output (CO) and hyperlactataemia, resuscitation with terlipressin recovered MAP and resulted in restoration of CPP and in cerebral protection expressed by normalisation of AQP4, NKCC1, TBARS and MnSOD expression and Bcl-x/Bax ratio at T60 and T120 compared with sham animals. In the LR group, CO and blood lactate levels were recovered, but the CPP and MAP were significantly decreased and TBARS levels and AQP4, NKCC1 and MnSOD expression and Bcl-x/Bax ratio were significantly increased at T60 and T120 compared with the sham group. Conclusions: During recovery from HS-induced hypotension, terlipressin was effective in normalising CPP and cerebral markers of water balance, oxidative damage and apoptosis. The role of this pressor agent on brain perfusion in HS requires further investigation

    Comments on black holes I: The possibility of complementarity

    Get PDF
    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer 'burns' as he approaches the horizon. We show that in fact measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to 'continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of 'fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde

    An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions

    Full text link
    Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n=933) and validated in the remaining patients (n=552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin
    corecore