556 research outputs found
Spectral characterization of families of split graphs
An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split
graphs, involving its index and the entries of the principal eigenvector corresponding
to the vertices of the maximum independent set is given. In particular, the complete
split graph case is highlighted
Relations between (κ, τ)-regular sets and star complements
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph
is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples
Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry
We present a complete relativistic analysis for the scalar radiation emitted
by a particle in circular orbit around a Schwarzschild-anti-de Sitter black
hole. If the black hole is large, then the radiation is concentrated in narrow
angles- high multipolar distribution- i.e., the radiation is synchrotronic.
However, small black holes exhibit a totally different behavior: in the small
black hole regime, the radiation is concentrated in low multipoles. There is a
transition mass at , where is the AdS radius. This behavior is
new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde
Missing energy in black hole production and decay at the Large Hadron Collider
Black holes could be produced at the Large Hadron Collider in TeV-scale
gravity scenarios. We discuss missing energy mechanisms in black hole
production and decay in large extra-dimensional models. In particular, we
examine how graviton emission into the bulk could give the black hole enough
recoil to leave the brane. Such a perturbation would cause an abrupt
termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference
Quantum Radiation from a 5-Dimensional Rotating Black Hole
We study a massless scalar field propagating in the background of a
five-dimensional rotating black hole. We showed that in the Myers-Perry metric
describing such a black hole the massless field equation allows the separation
of variables. The obtained angular equation is a generalization of the equation
for spheroidal functions. The radial equation is similar to the radial
Teukolsky equation for the 4-dimensional Kerr metric. We use these results to
quantize the massless scalar field in the space-time of the 5-dimensional
rotating black hole and to derive expressions for energy and angular momentum
fluxes from such a black hole.Comment: references added, accepted for publication in Physical Review
Moduli and (un)attractor black hole thermodynamics
We investigate four-dimensional spherically symmetric black hole solutions in
gravity theories with massless, neutral scalars non-minimally coupled to gauge
fields. In the non-extremal case, we explicitly show that, under the variation
of the moduli, the scalar charges appear in the first law of black hole
thermodynamics. In the extremal limit, the near horizon geometry is
and the entropy does not depend on the values of moduli at
infinity. We discuss the attractor behaviour by using Sen's entropy function
formalism as well as the effective potential approach and their relation with
the results previously obtained through special geometry method. We also argue
that the attractor mechanism is at the basis of the matching between the
microscopic and macroscopic entropies for the extremal non-BPS Kaluza-Klein
black hole.Comment: 36 pages, no figures, V2: minor changes, misprints corrected,
expanded references; V3: sections 4.3 and 4.5 added; V4: minor changes,
matches the published versio
Particle motion in the field of a five-dimensional charged black hole
In this paper, we have investigated the geodesics of neutral particles near a
five-dimensional charged black hole using a comparative approach. The effective
potential method is used to determine the location of the horizons and to study
radial and circular trajectories. This also helps us to analyze the stability
of radial and circular orbits. The radius of the innermost stable circular
orbits have also been determined. Contrary to the case of massive particles for
which, the circular orbits may have up to eight possible values of specific
radius, we find that the photons will only have two distinct values for the
specific radii of circular trajectories. Finally we have used the dynamical
systems analysis to determine the critical points and the nature of the
trajectories for the timelike and null geodesics.Comment: 15 pages, accepted for publication in Astrophysics and Space Scienc
Signatures of black holes at the LHC
Signatures of black hole events at CERN's Large Hadron Collider are
discussed. Event simulations are carried out with the Fortran Monte Carlo
generator CATFISH. Inelasticity effects, exact field emissivities, color and
charge conservation, corrections to semiclassical black hole evaporation,
gravitational energy loss at formation and possibility of a black hole remnant
are included in the analysis.Comment: 13 pages, 7 figure
Some results on the Krein parameters of an association scheme
We consider association schemes with d classes and the underlying Bose-
Mesner algebra, A. Then, by taking into account the relationship between the
Hadamard and the Kronecker products of matrices and making use of some matrix
techniques over the idempotents of the unique basis of minimal orthogonal idempotents
of A , we prove some results over the Krein parameters of an association
scheme
Pair creation of anti-de Sitter black holes on a cosmic string background
We analyze the quantum process in which a cosmic string breaks in an anti-de
Sitter (AdS) background, and a pair of charged or neutral black holes is
produced at the ends of the strings. The energy to materialize and accelerate
the pair comes from the strings tension. In an AdS background this is the only
study done in the process of production of a pair of correlated black holes
with spherical topology. The acceleration of the produced black holes is
necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant.
Only in this case the virtual pair of black holes can overcome the attractive
background AdS potential well and become real. The instantons that describe
this process are constructed through the analytical continuation of the AdS
C-metric. Then, we explicitly compute the pair creation rate of the process,
and we verify that (as occurs with pair creation in other backgrounds) the pair
production of nonextreme black holes is enhanced relative to the pair creation
of extreme black holes by a factor of exp(Area/4), where Area is the black hole
horizon area. We also conclude that the general behavior of the pair creation
rate with the mass and acceleration of the black holes is similar in the AdS,
flat and de Sitter cases, and our AdS results reduce to the ones of the flat
case when L=0.Comment: 13 pages, 3 figures, ReVTeX
- …
