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Abstract We consider association schemes with d classes and the underlying Bose-
Mesner algebra, A . Then, by taking into account the relationship between the
Hadamard and the Kronecker products of matrices and making use of some matrix
techniques over the idempotents of the unique basis of minimal orthogonal idem-
potents of A , we prove some results over the Krein parameters of an association
scheme.

1 Introduction

The concept of association scheme was defined by Bose and Shimamoto in 1952,
[4], and constitutes a powerful algebra and combinatorics tool that has a wide range
of applications from statistics, [2, 4], combinatorial designs, [2, 3, 4], coding theory,
[6], group theory, [8, 9], or character theory, [7]. One can observe an association
scheme with d classes as a general and more complex combinatorial structure. In
fact, each relation of an association scheme corresponds to an undirected graph and,
as a particular example, an association scheme with just two classes is equivalent to
a strongly regular graph and its complement.
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In this work we consider association schemes with d classes and the correspond-
ing Bose-Mesner algebra, A , that is the algebra spanned by the matrices of the
association scheme, as well as the unique basis of minimal orthogonal idempo-
tents {E0, . . . ,Ed} associated to A . We consider some special sums and products
of these idempotents to prove some results over the Krein parameters of the associ-
ation scheme.

This paper is organized as follows. In Section 2 the theory of association schemes
is surveyed, while in Section 3 we present some important notation and matrix the-
ory results. Then, in Section 4, we prove some results over the Krein parameters of
an association scheme, namely a new upper bound for some of the Krein parame-
ters. We finish the paper with two examples of association schemes which proves
the optimality of our bound (Section 5).

2 Association schemes and the Bose-Mesner algebra

In this section we present relevant concepts for our work which can be seen, for
instance, in [1].

An association scheme with d associate classes on a finite set X is a partition of
X×X into sets R0,R1, . . . ,Rd , that are relations on X such that

(i) R0 = {(x,x) : x ∈ X};
(ii) if (x,y) ∈ Ri, then (y,x) ∈ Ri, for all x,y in Ri and i in {0,2, . . . ,d};
(iii) for all i, j, l in {0,1, . . . ,d} there is an integer pl

i j such that, for all (x,y) in Rl∣∣{z ∈ X : (x,z) ∈ Ri and (z,y) ∈ R j}
∣∣= pl

i j.

The numbers pl
i j are called the intersection numbers of the association scheme. In

the case we have (x,y)∈ Ri, the elements x and y of X are called i-th associates. It is
usual to observe the intersection numbers as the entries of the so called intersection
matrices L0,L1, . . . ,Ld , with (Li)l j = pl

i j, where L0 = In.
The definition presented above is due to Bose and Shimamoto, [4], and by axiom

(ii) the relations Ri are all symmetric. This is why an association scheme defined in
this way is normally called symmetric. A more general definition can be seen in [6].
Along this text we will only consider symmetric association schemes.

The associate classes R0,R1, . . . ,Rd of a symmetric association scheme can be
described by their adjacency matrices A0,A1, . . . ,Ad , where each Ai is a matrix of
order n defined by (Ai)xy = 1, if (x,y) ∈ Ri, and (Ai)xy = 0, otherwise. We also have

(a) A0 = In;
(b) ∑

d
i=0 Ai = Jn;

(c) Ai = A>i , ∀i ∈ {0,1, . . . ,d};
(d) AiA j = ∑

d
l=0 pl

i jAl , ∀i, j ∈ {0,1, . . . ,d};

where In and Jn are the identity and the all ones matrices of order n, respectively,
and AT denotes the transpose of A. Note that (b) implies that the matrices Ai, i =
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0,1, . . . ,d are linearly independent. It is also well known (see [1, Lemma 1.3]) that
the commutativity of the scheme asserts that pl

i j = pl
ji and thus AiA j = A jAi, for all

i, j in {0,1, . . .d}.
We can acknowledge A1,A2, . . . ,Ad as adjacency matrices of undirected simple

graphs G1,G2, . . . ,Gd , with common vertex set V . Two vertices u and v of V are
i-related if uv is an edge in Gi, for i in {1,2, . . . ,d}.

The simpler association schemes are those with only one class. It corresponds
to A0 = In and A1 = Jn− In. Since G1 is the complete graph this situation is out
of interest. The next simpler case regards symmetric association schemes with two
classes which is equivalent to strongly regular graphs. In fact, we have A0 = In,
A1, A2 = Jn−A1− In, where A1 and A2 correspond to the adjacency matrices of a
strongly regular graph and it’s complement, respectively. Conversely, if A is the ad-
jacency matrix of a strongly regular graph, then In,A,Jn−A− In form an association
scheme with two classes.

The matrices A0,A1, . . . ,Ad of a symmetric association scheme generate a com-
mutative algebra, A , with dimension d + 1, of symmetric matrices with constant
diagonal. This algebra is called the Bose-Mesner algebra of the scheme because
it was firstly studied by these two mathematicians in [3]. Note that A is an alge-
bra with respect to the usual matrix product as well as to the Hadamard (or Schur)
product, defined for two matrices A, B of order n as the componentwise product:
(A◦B)i j = Ai jBi j. The algebra A is commutative and associative relatively to this
product with unit Jn.

An element E in A is an idempotent if E2 = E. Two idempotents E and F in
A are orthogonal if EF = 0. The Bose-Mesner algebra A has a unique basis of
minimal orthogonal idempotents {E0, . . . ,Ed} such that

EiE j = δi jEi,

d

∑
i=0

Ei = In.

Let A be an association scheme with d classes. If A j ∈A , j ∈ {0,1 . . . ,d} has d+1
distinct eigenvalues, namely λ0,λ1, . . . ,λd , the idempotents Ei can be obtained as the
projectors associated to the matrix A j through the equality:

Ei =
d

∏
l=0,l 6=i

A j−λlIn

λi−λl
. (1)

Besides the intersection numbers already introduced in the beginning of the sec-
tion each association scheme contains three more families of parameters: the eigen-
values, the dual eigenvalues and the Krein parameters. In fact, there are scalars pi( j)
and qi( j) such that, for all i = 0,1, . . . ,d, we have
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Ai =
d

∑
j=0

pi( j)E j and (2)

Ei =
d

∑
j=0

qi( j)A j, (3)

where the numbers pi( j) and qi( j) are the eigenvalues and the dual eigenvalues of
the scheme, respectively. We also define the eigenmatrix, P = (Pi j), and the dual
eigenmatrix, Q = (Qi j), each with dimension (d + 1)× (d + 1), as Pi j = p j(i) and
Qi j = q j(i), respectively. From (2) and (3) one can deduce that PQ = In. As a con-
sequence, the dual eigenvalues are determined by the eigenvalues of A .

Finally, the Krein parameters discovered by Scott, [12], of an association scheme
with d classes are the numbers ql

i j, with i, j, l ∈ {0,1, . . . ,d}, such that

Ei ◦E j =
d

∑
l=0

ql
i jEl .

These parameters can be seen as dual parameters of the intersection numbers and
they are determined by the eigenvalues of the scheme. The Krein parameters of
an association scheme with d classes can also be considered as the entries of the
matrices L∗0,L

∗
1, . . . ,L

∗
d , such that (L∗i )l j = ql

i j, which are called the dual intersection
matrices of the scheme.

3 Matrix tools

In this section we introduce some notation and some Matrix Theory results that are
used in our work in Section 4.

We denote by Mn(R) the space of square matrices with real entries and by
Mm,n(R) the space of m×n matrices with real entries. The space of hermitian ma-
trices with complex entries and dimension n is denoted by Hermn(C) and Symn(R)
denotes the space of n dimensional real symmetric matrices. Besides the Hadamard
product already introduced in Section 2, we denote by⊗ the Kronecker product, for
matrices C = [ci j] ∈Mm,n(R) and D = [di j] ∈Mp,q(R), defined by

C⊗D =

 c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD

 .

The next result is of central importance in the proof of our results. For B∈ Symn(R),
we denote the eigenvalues of B in increasing order by λ1(B)≤ λ2(B)≤ ·· · ≤ λn(B).

Theorem 1. [10, Eigenvalues Interlacing Theorem] Let A∈ Symn(R) and Ar denote
any principal submatrix of A. Then, the eigenvalues of Ar interlace those of A in the
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sense that:
λi(A)≤ λi(Ar)≤ λn−r+i(A),

for each 1≤ i≤ r.

Note that Ar is obtained by deleting n− r rows and the corresponding columns from
A.

The next result shows that A ◦ B is a principal submatrix of A⊗ B. Note that
A(α,β ) denotes a submatrix of A ∈Mm,n(R) determined by some index sets α and
β .

Lemma 1. [11, Lemma 5.1.1] If A,B ∈Mm,n(R), then

A◦B = (A⊗B)(α,β )

in which α = {1,m+ 2,2m+ 3, . . . ,m2} and β = {1,n+ 2,2n+ 3, . . . ,n2}. In par-
ticular, if m = n, A◦B is a principal submatrix of A⊗B.

By Lemma 1 and since the eigenvalues of A⊗B are the product between the
eigenvalues of A with the eigenvalues of B, we have the following corollary of The-
orem 1, (see [11]).

Corollary 1. If A,B ∈ Hermn(C) (Sym(n,R)), then:

(i) λmin(A◦B)≥ λmin(A)λmin(B);
(ii) λmax(A◦B)≤ λmax(A)λmax(B).

4 Some results on the Krein parameters of an association scheme

In this section we make use of the tools presented in Section 3 to prove some results
over the Krein parameters of an association scheme.

The following result establishes a formula for the calculation of the Krein param-
eters of an association scheme.

Proposition 1. Let {A0,A1, . . . ,Ad} be an association scheme with d classes and
j,k, l ∈ {0,1, . . . ,d}. Then

ql
jk =

d

∑
m=0

Qm jQmkPml , (4)

with P and Q the eigenmatrix and the dual eigenmatrix of the association scheme,
respectively.

Proof. Let {A0,A1, . . . ,Ad} be an association scheme with d classes, P and Q the
eigenmatrix and the dual eigenmatrix of the association scheme, respectively, and
{E0,E1, . . . ,Ed} the unique basis of minimal orthogonal idempotents of the under-
lying Bose-Mesner algebra A .



6 Vasco Moço Mano, Enide Andrade Martins and Luı́s Almeida Vieira

Let j,k, l ∈ {0,1, · · · ,d}. We have E j = ∑
d
i=0 Qi jAi and Ek = ∑

d
i=0 QikAi. There-

fore,

E j ◦Ek =
d

∑
i=0

Qi jQikAi.

Also, we have the equality

E j ◦EkEl =
d

∑
i=0

Qi jQikAiEl .

From (2), we conclude that AiEl = Pli. Thus

E j ◦EkEl =
d

∑
i=0

Qi jQikPliEl .

Therefore

ql
jk =

d

∑
i=0

Qi jQikPli.

Making use of the entries of the matrices P and Q, the formula given by equal-
ity (4) allow us to easily calculate the Krein parameters of an association scheme.
Furthermore, the Krein parameters of an association scheme satisfy the following
results.

Theorem 2. The Krein parameters of an association scheme with d classes satisfy
the following properties.

1. For l ∈ {0,1, . . . ,d} the following equality holds:

∑
0≤i, j≤d

ql
i j = 1. (5)

2. For l,r ∈ {0,1, . . . ,d}, we have

∑
0≤i≤r−1
r≤ j≤d

ql
i j ≤

1
2
. (6)

Proof. Let {A0,A1, . . . ,Ad} be an association scheme with d classes, A the under-
lying Bose-Mesner algebra and {E0,E1, . . . ,Ed} the unique basis of minimal orthog-
onal idempotents of A .

1. From equality (
d

∑
i=0

Ei

)
◦

(
d

∑
j=0

E j

)
= In,

we conclude that, for l ∈ {0,1, . . . ,d},
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d

∑
i=0

Ei ◦E j

)
El = El ,

from which (5) naturally arrises.
2. Let r ∈ {1,2, . . . ,d} and B be the following matrix

B = (E0 +E1 + · · ·+Er−1)⊗ (Er +Er+1 + · · ·+Ed)

+ (Er +Er+1 + · · ·+Ed)⊗ (E0 +E1 + · · ·+Er−1).

Since B is an idempotent matrix its eigenvalues belong to the set {0,1}. By
Lemma 1, we observe that matrix B has a principal submatrix, C, given by

C = (E0 +E1 + · · ·+Er−1)◦ (Er +Er+1 + · · ·+Ed)

+ (Er +Er+1 + · · ·+Ed)◦ (E0 +E1 + · · ·+Er−1),

and since the Hadamard product is commutative, C is given simply by

C = 2(E0 +E1 + · · ·+Er−1)◦ (Er +Er+1 + · · ·+Ed).

Now, applying Theorem 1, we conclude that, for l ∈ {0,1, . . . ,d},

0≤ 2 ∑
0≤i≤r−1
r≤ j≤d

ql
i j ≤ 1

and inequality (6) follows imediatly.

The following result is a consequence of Theorem 2.

Corollary 2. For each l ∈ {0,1, . . . ,d}, the Krein parameters of an association
scheme with d classes satisfy the following properties:

1.
d

∑
i=0

ql
ii ≤ 1;

2. min
i∈{0,...,d}

{ql
ii} ≤

1
d +1

.

Our last result establishes a new upper bound for some of the Krein parameters
of an association scheme.

Theorem 3. If l, i, j ∈ {0,1, . . . ,d}, i 6= j, then

ql
i j ≤

1
2
.

Furthermore, if it exists an i∈ {0,1, . . . ,d}, i 6= j, such that ql
ii 6= 0, then the inequal-

ity presented is strict.
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Proof. Let {A0,A1, . . . ,Ad} be an association scheme with d classes, A the under-
lying Bose-Mesner algebra and {E0,E1, . . . ,Ed} the unique basis of minimal orthog-
onal idempotents of A .

Let i, j ∈ {0,1, . . . ,d}. The matrix

B = ∑
0≤r≤d
r 6= j

(Er⊗Er)+Ei⊗E j +E j⊗Ei

is an idempotent matrix which possesses a principal submatrix, C, given by

C = ∑
0≤r≤d
r 6= j

(Er ◦Er)+Ei ◦E j +E j ◦Ei,

(see Lemma 1). For each l ∈ {0,1, . . . ,d} we also have that ∑
0≤r≤d
r 6= j

(Er ◦Er)+Ei ◦E j +E j ◦Ei

El

= ∑
0≤r≤d
r 6= j

[(Er ◦Er)El ]+ (Ei ◦E j)El +(E j ◦Ei)El

= ∑
0≤r≤d
r 6= j

(
ql

rrEl

)
+ql

i jEl +ql
i jEl .

Then, by Theorem 1, the eigenvalues of C are bounded by 0 and 1 and therefore, for
each l ∈ {0,1, . . . ,d} we have

0≤ ∑
0≤r≤d
r 6= j

(
ql

rr

)
+2ql

i j ≤ 1. (7)

By property (1.) of Corollary 2, from (7), we conclude the statements of Theorem
3.

5 Some examples

In this section we present two examples for our upper bound of the Krein parameters
of an association scheme. The first example is based on the notation presented in the
paper [5].

Example 1. Let n be an even natural number and Ui, j ∈Mn(R) be the matrices
defined by (Ui, j)pq = δipδ jq, for i, j, p,q ∈ {1,2, . . . ,n}. Let m = n

2 + 1. Now we
consider the family of matrices F = {Bi}i∈{1,...,m} such that:
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• B1 = In
• Br =∑

n
l=r Ul,l−r+1+∑

n
l=r Ul−r+1,l+∑

r−1
l=1 Un−r+1+l,l+∑

r−1
l=1 Ul,n−r+1+l , r = 2, . . . ,m;

• Bm = ∑
m−1
l=1 Un−m+1+l,l +∑

m−1
l=1 Ul,n−m+1+l .

From the definition, the matrices A j, j ∈ {2, . . . ,m} are symmetric matrices and zero
diagonal elements.

For i = 0,1, . . . ,n−1, the matrices Ci are defined by the formula

(Ci)pq =

{
1 if q = p⊕n i,
0 if q 6= p⊕n i, ,

where ⊕n denotes the sum modulo n. Then we have that the matrices B j, j ∈
{2, . . . ,m} are given by:

B1 = C0

B j = C j−1 +Cn− ( j−1), j ∈ {2, . . . ,m−1}
Bm = Cm−1.

Since the matrices Ci are commutative, then the family F is a commutative matrices
family.

Now we construct the following association scheme with two classes A =
{A0,A1,A2} where:

A0 = In

A1 =
m−1

∑
i=2

Bi

A2 = Jn−A1− In,

where Jn is the all ones matrix. The minimal polynomial of A1 is given by

p(λ ) = λ (λ +2)(λ −n+2).

The unique basis of minimal idempotents of A is the set {E0,E1,E2} such that

E0 =
1
n

Jn,

E1 =
1
2

In−
1
2
(Jn−A− In) ,

E2 =
n−2

2n
In−

1
n

A+
n−2

2n
(Jn−A− In) .

Then the Krein parameter q1
12 can be written as

q1
12 =

n−2
2n

,

which converges to 1/2 when n tends to infinity.
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Since the association schemes of two classes are particular cases of association
schemes, we may conclude, from Example 1 that the upper bound 1/2 for the Krein
parameters ql

i j, for i 6= j, in Theorem 3, is optimal for an association scheme with
any number of classes.

In our final example we present a family of association schemes with three
classes constructed from symmetric designs. This family has an infinite number
of elements and is presented and studied in [13].

Let P be a set of points and B be a set of blocks, where a block is a subset of
P . Then, the ordered pair (P,B) is a symmetric design with parameters (n,k,c) if
it satisfies the following properties:

(i) B is a subset of the power set of P;
(ii) |P|= |B|= n;
(iii) ∀b ∈B, |b|= k;
(iv) ∀p ∈P , |{b ∈B : p ∈ b}|= k;
(v) ∀p1, p2 ∈P , p1 6= p2, |{b ∈B : p1, p2 ∈ b}|= c;
(vi) ∀b1,b2 ∈B, b1 6= b2, |{p ∈P : p ∈ b1∧ p ∈ b2}|= c.

Example 2. Given a symmetric design with parameters (n,k,c), we build a three
class association scheme, as in [13], in the following manner. Let X = P ∪B. We
define the following relations in X×X :

R0 = {(x,x) : x ∈ X};
R1 = {(x,y) ∈P×B : x ∈ y}∪{(y,x) ∈B×P : x ∈ y};
R2 = {(x,y) ∈P×P : x 6= y}∪{(x,y) ∈B×B : x 6= y};
R3 = {(x,y) ∈P×B : x /∈ y}∪{(y,x) ∈B×P : x /∈ y}.

Through the axioms (i)− (vi) of a symmetric design it is proved that R0,R1,R2,R3
constitute an association scheme with three classes over X . From the relations above
we compute the intersection matrices of the association scheme, given by L0 = I4,

L1 =


0 k 0 0
1 0 k−1 0
0 c 0 k− c
0 0 k 0

 , L2 =


0 0 n−1 0
0 k−1 0 n− k
1 0 n−2 0
0 k 0 n− k−1

 ,

L3 =


0 0 0 n− k
0 0 n− k 0
0 k− c 0 n−2k+ c
1 0 n− k−1 0

 .

Now, using axioms (a)− (d) of the matrices of the Bose-Mesner algebra, A =
{A0,A1,A2,A3}, we obtain their multiplication table.
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× A0 A1 A2 A3
A0 A0 A1 A2 A3
A1 A1 kA0 + cA2 (k−1)A1 + kA3 (k− c)A2
A2 A2 (k−1)A1 + kA3 (n−1)A0 +(n−2)A2 (n− k)A1 +(n− k−1)A3
A3 A3 (k− c)A2 (n− k)A1 +(n− k−1)A3 (n− k)A0 +(n−2k+ c)A2

Making use of the multiplication table of the matrices of A , we can calculate the
powers of A1 to obtain the minimal polynomial of A1, which is given by:

pA1(λ ) = λ
4 +(−k2− k+ c)λ 2 + k2(k− c). (8)

Applying formula (1) in order to matrix A1 and considering the eigenvalues of the
polynomial (8), λ0 = k, λ1 = −k, λ2 =

√
k− c and λ3 = −

√
k− c, we obtain the

elements of the unique basis of minimal orthogonal idempotents of A :

E0 =
A0 +A1 +A2 +A3

2n
=

Jn

2n

E1 =
A0−A1 +A2−A3

2n

E2 =
(n−1)

√
k− cA0 +(n− k)A1−

√
k− cA2− kA3

2n
√

k− c

E3 =
(n−1)

√
k− cA0− (n− k)A1−

√
k− cA2 + kA3

2n
√

k− c
.

Now we apply equalities (2) and (3) to compute the matrices P and Q, respectively:

P =


1 k n−1 n− k
1 −k n−1 k−n
1
√

k− c −1 −
√

k− c
1 −
√

k− c −1
√

k− c

 , Q =
1
2n


1 1 n−1 n−1
1 −1 − k−n√

k−c
k−n√
k−c

1 1 −1 −1
1 −1 − k√

k−c
k√
k−c

 .

Finally, we obtain the dual intersection matrices of this association scheme by ap-
plying formula (4) from Proposition 1: L∗0 = I4/2n,
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L∗1 =
1

2n


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

L∗2 =
1

2n


0 0 n−1 0
0 0 0 n−1
1 0 n−2

2 −
n−2k

2
√

k−c
n−2

2 + n−2k
2
√

k−c
0 1 n−2

2 + n−2k
2
√

k−c
n−2

2 −
n−2k

2
√

k−c

 ,

L∗3 =
1

2n


0 0 0 n−1
0 0 n−1 0
0 1 n−2

2 + n−2k
2
√

k−c
n−2

2 −
n−2k

2
√

k−c
1 0 n−2

2 −
n−2k

2
√

k−c
n−2

2 + n−2k
2
√

k−c

 .

From the dual intersection matrices presented above, it is possible to extract some
evidence of the optimality of the upper bound 1/2, for the Krein parameters ql

i j,
with i 6= j, presented in Theorem 3. In fact, we can observe that

q0
23 = (L∗2)03 =

n−1
2n

and this value converges to 1/2, when n tends to infinity.

With these two examples we show that the upper bound presented in Theorem 3,
for the Krein parameters ql

i j, with i 6= j of any association scheme, is optimal and
cannot be improved in the general case.
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