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1 Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) and edge set
E = E(G). The order and the size of G are denoted by ν(= |V |) and ǫ(= |E|),
respectively. We write u ∼ v whenever the vertices u and v are adjacent, and
AG stands for the (0, 1)-adjacency matrix of G. The neighborhood of a vertex
i ∈ V (G), that is, the set of vertices adjacent to i, is denoted by NG(i), the de-
gree of i is di = |NG(i)|, ∆(G) = maxi∈V (G) di and δ(G) = mini∈V (G) di. The
subgraph of G induced by the vertex subset T ⊂ V (G) is denoted by G[T ]. On
the other hand, the set of edges with just one end vertex in T is denoted ∂(T ).
The largest eigenvalue of AG, denoted by λ1(G), is commonly called the index
or spectral radius of G. If T ⊂ V (G) is a vertex subset of G its complement is
denoted T̄ (that is, T̄ = V (G)\T ). A stable or independent set (clique) is a subset
of pairwise non-adjacent (adjacent) vertices. The stability number or independence
number (clique number) of a graph G, denoted by α(G) (ω(G)) is the cardinality
of a stable set (clique) with maximum cardinality. For further details the reader
is referred to [5,6].

Let us start recalling that a split graph is a graph whose vertex set can be
divided into two subsets, one being a co-clique, the other being a clique, and all
other edges (the cross-edges) join two vertices belonging to different subsets. If
each vertex in co-clique is adjacent to all vertices in clique then G is called a
complete split graph.

Since, in the case of connected graphs, AG is a nonnegative and irreducible
matrix, the eigenvector corresponding to the index can be taken to be positive.
Unless stated otherwise, we will denote such vector by

x = (x1, x2, . . . , xν)
T
,

and assume that
ν
∑

i=1

x
2
i = 1, i.e., x is a unit vector known as the principal eigen-

vector of G [6, p.16]. The results of this note are stated in terms of this eigenvector.
In [3] the following result was shown.

Theorem 1 [3] Let G be a connected graph. If S ⊂ V (G) is an independent set,
we have

∑

i∈S

x
2
i ≤ 1

2
.

Moreover, G is bipartite with S as one color class if and only if
∑

i∈S x2
i = 1

2 .

However, there are bipartite graphs G with color classes V1 and V2 such that none
of them are maximum independent sets, that is, there exists an independent set
S ⊂ V (G) such that |S| > max{|V1|, |V2|}. As consequence, even for bipartite
graphs G (as it is the case of the graph depicted in the next figure), there are
maximum independent sets S ⊂ V (G) such that

∑

i∈S

x
2
i <

1

2
.

In the next section the above result is extended to the case of vertex subsets
inducing k-regular subgraphs, with k ∈ N ∪ {0}. This extension is applied to the
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Fig. 1 A bipartite graph where none of the color classes V1 = {1, 2, 3} and V2 = {4, 5, 6} is
a maximum independent set and the maximum independent set S = {1, 2, 4, 5} is such that
∑

i∈S x2
i < 1/2.

determination of an upper bound on the order of k-regular induced subgraphs. A
convex quadratic upper bound on the order of k-regular induced subgraphs was
obtained in [1] (see also [2]). In Section 3, for some connected graphs, a lower bound
for the sum of squares of the entries of the principal eigenvector corresponding to
the vertices of an independent set is introduced. Based on the previous result, in
Section 4, families of split graphs are characterized by a function of its index and
the entries of the principal eigenvector corresponding to the vertices of the maxi-
mum independent set. Furthermore, the complete split graph case is highlighted.
In Section 5, numerical examples are presented.

2 An upper bound on the sum of squares of the entries of the
principal eigenvector corresponding to a vertex subset inducing a
k-regular subgraph

Now, we introduce the following generalization of Theorem 1.

Theorem 2 Let G be a connected graph, such that its index is λ1 = λ1(G). If
S ⊂ V (G) induces a k-regular subgraph, with k ∈ N ∪ {0}, then

∑

i∈S

x
2
i ≤ λ1

2λ1 − k
. (1)

Furthermore, (1) holds as equality if and only if S̄ = V (G)\S is an independent
set and one of the following conditions holds: (i) k = 0 (and then G is bipartite)
or (ii) xi = constant for all the vertices i of each component of G[S].

Proof Let AG =

(

AG[S] B

BT AG[S̄]

)

, λ1 the index of G and x its corresponding princi-

pal eigenvector as introduced above, such that x =

(

x

y

)

, where the entries of x =

(x1, . . . , xm)T correspond to the vertices in S and the entries in y = (y1, . . . , yn)
T

correspond to the vertices in S̄. Since λ1xi =
∑

j∈NG(i)∩S xj +
∑

j∈NG(i)∩S̄ yj ,
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then λ1x
2
i =

∑

j∈NG(i)∩S xixj +
∑

j∈NG(i)∩S̄ xiyj . Therefore, it follows

λ1

∑

i∈S

x
2
i = 2

∑

ij∈E(G[S])

xixj +
∑

ij∈∂(S)

xiyj

=
xTAG[S]x

2
+

∑

ij∈E(G[S])

xixj +
∑

ij∈∂(S)

xiyj

=
xTAG[S]x

2
+

xTAGx

2
− 1

2
y
T
AG[S̄]y

=
λ1

2
+

1

2

(

x
T
AG[S]x− y

T
AG[S̄]y

)

. (2)

Since the index of G[S] is λ1(G[S]) = k, it follows that xTAG[S]x ≤ k‖x‖2 =

k
∑

i∈S x2
i , and then

∑

i∈S

x
2
i ≤ λ1

2λ1
+

k
∑

i∈S x2
i

2λ1
−

yTAG[S̄]y

2λ1

m
∑

i∈S

x
2
i (1−

k

2λ1
) ≤ λ1

2λ1
−

yTAG[S̄]y

2λ1

m
∑

i∈S

x
2
i ≤ λ1

2λ1 − k
− 1

2λ1 − k
y
T
AG[S̄]y. (3)

Therefore, note that yTAG[S̄]y ≥ 0, we obtain
∑

i∈S x2
i ≤ λ1

2λ1−k
.

Let us prove the second part of the theorem.

1. First, assume that S̄ is an independent set (then yTAG[S̄]y = 0) and one of
the conditions (i) or (ii) holds.
(i) If k = 0, then S is an independent set and therefore G is bipartite with

S as one of its two color classes. Applying Theorem 1, the inequality (1)
holds as equality.

(ii) If xi = constant for every vertex i in each component of G[S], then x

is an eigenvector of AG[S] corresponding to the eigenvalue k. From (2),
∑

i∈S x2
i = λ1

2λ1
+ 1

2λ1
xTAG[S]x ⇔ xTAG[S]x = 2λ1

∑

i∈S x2
i − λ1. There-

fore,

k =
xTAG[S]x
∑

i∈S x2
i

= 2λ1 − λ1
∑

i∈S x2
i

⇒
∑

i∈S

x
2
i =

λ1

2λ1 − k
.

2. Conversely, suppose that the inequality (1) holds as equality. Then, from (3),
yTAG[S̄]y = 0 and, since the entries of y are all positive, we may conclude that

S̄ is an independent set. On the other hand, from (2) and taking into account
the equality

∑

i∈S x2
i = λ1

2λ1−k
,

∑

i∈S

x
2
i =

λ1

2λ1
+

1

2λ1
x
T
AG[S]x ⇔ 1 =

2λ1 − k

2λ1
+

1

2λ1

xTAG[S]x
∑

i∈S x2
i

⇔ xTAG[S]x

‖x‖2 = k.
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Therefore, x is an eigenvector corresponding to the eigenvalue k (the regularity
ofG[S]) and thus or k = 0 or xi = constant for every vertex i in each component
of G[S].

⊓⊔

From this theorem, we have the following corollary.

Corollary 1 If G is a connected p-regular graph of order ν and S ⊂ V (G) induces
a k-regular subgraph, then |S| ≤ ν p

2p−k
.

Proof Assume that G is p-regular (then its index is p and the corresponding prin-
cipal eigenvector has entries xi = 1√

ν
, i = 1, . . . , ν) and S ⊂ V (G) induces a

k-regular subgraph. Then, applying Theorem 2, it follows

∑

i∈S

x
2
i =

|S|
ν

≤ λ1

2λ1 − k
=

p

2p− k
.

Therefore, |S| ≤ ν p
2p−k

. ⊓⊔

As immediate consequence, if G is a connected regular graph of order ν, then
α(G) ≤ ν

2 .

From now on, let us assume that x and x̄ denote the minimum and maxi-
mum of the entries of the principal eigenvector x of the connected graph G. As a
consequence of Theorem 2, we deduce the following corollary.

Corollary 2 Let G be a connected graph of order ν, with index λ1 and principal
eigenvector x. If S ⊂ V (G) induces a k-regular subgraph with k ∈ N ∪ {0}, then

|S| ≤ min{⌊ λ1

x2(2λ1 − k)
⌋, ⌊ν − λ1 − k

x̄2(2λ1 − k)
⌋}. (4)

Proof Let us suppose that S ⊂ V (G) induces a k-regular subgraph of G. From
Theorem 2,

∑

i∈S x2
i ≤ λ1

2λ1−k
and then

∑

j∈S̄ yj
2 ≥ 1− λ1

2λ1−k
. Therefore,

|S|x2 ≤
∑

i∈S

x
2
i ≤ λ1

2λ1 − k
⇒ |S| ≤ λ1

x2(2λ1 − k)

(ν − |S|)x̄2 ≥
∑

j∈S̄

yj
2 ≥ λ1 − k

2λ1 − k
⇒ ν − λ1 − k

x̄2(2λ1 − k)
≥ |S|.

3 A lower bound on the sum of squares of the entries of the principal
eigenvector corresponding to the vertices of an independent set

Throughout this section, we consider a connected graph G with a vertex subset

S ⊂ V (G), such that AG =

(

AG[S] B

BT AG[S̄]

)

. Then

λ1 = x
T
AG[S]x+ 2xT

By + y
T
AG[S̄]y, (5)

where x = (x1, x2, . . . , xm)T is such that xj is the coordinate of x corresponding
to the vertex j ∈ S and y = (y1, y2, . . . , yn)

T is such that yi is the coordinate of x
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corresponding to the vertex i ∈ S̄.
If S is an independent set, then xTAG[S]x = 0 and, since

λ1

∑

i∈S

x
2
i =

∑

ij∈∂(S)

xiyj = x
T
By ,

from (5), it follows that

λ1 = 2λ1

∑

i∈S

x
2
i + y

T
AG[S̄]y. (6)

For any i ∈ S̄, by Cauchy-Schwartz inequality, we have

∑

j∈NG(i)∩S̄ yj

di
′ ≤

√

∑

j∈NG(i)∩S̄ yj2

di
′ ≤

√

1−∑j∈S x2
j − y2i

di
′ , (7)

where di
′ = |NG(i) ∩ S̄|. Hence,

∑

j∈NG(i)∩S̄

yj ≤
√

di
′
√

1−
∑

j∈S

x2
j − y2i ≤

√
∆′
√

1−
∑

j∈S

x2
j − y2i (8)

where ∆′ = max
i 6∈S

di
′. Then,

y
T
AG[S̄]y = (

∑

j∈NG[S̄](1)

yj)y1+. . .+(
∑

j∈NG[S̄](n)

yj)yn ≤
√
∆′
∑

i∈S̄





√

1−
∑

j∈S

x2
j − y2i



 yi.

(9)
Now, we look for the maximum of the function

F (y1, . . . , yn) =
√
∆′
∑

i∈S̄





√

1−
∑

j∈S

x2
j − y2i



 yi (10)

under the constraint
n
∑

i=1

y
2
i = 1−

∑

j∈S

x
2
j . (11)

For this purpose we introduce the Lagrangian associated with constrained prob-
lem:

G(y1, . . . , yn, µ) = F (y1, . . . , yn)− µ





n
∑

i=1

y
2
i − (1−

∑

j∈S

x
2
j )



 . (12)

The stationary points of the function G(y1, . . . , yn, µ) are the solutions of the
following system of the equations:

∂G

∂yi
=

√
∆′













−y2i
√

1−
∑

j∈S

x2
j − y2i

+

√

1−
∑

j∈S

x2
j − y2i













− 2µyi = 0, for i = 1, . . . , n, (13)

∂G

∂µ
=

n
∑

i=1

y2i −



1−
∑

j∈S

x2
j



 = 0. (14)
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From (13) we obtain

y
2
i =



1−
∑

j∈S

x
2
j





(

1

2
± µ

2
√

µ2 +∆′

)

, for i = 1, . . . , n. (15)

Let us first determine the entries yi such that y2i =
(

1−∑j∈S x2
j

)

(

1
2 + µ

2
√

µ2+∆′

)

.

Assuming that there are p such entries yi, with 0 ≤ p ≤ n, it follows that

p



1−
∑

j∈S

x
2
j





(

1

2
+

µ

2
√

µ2 +∆′

)

≤ 1−
∑

j∈S

x
2
j ⇔ p

(

1

2
+

µ

2
√

µ2 +∆′

)

≤ 1

(16)
and then p ≤ 2. Otherwise, we get a contradiction.
Therefore, p ∈ {0, 1, 2}.
– If p = 2, then µ = 0 and n = 2. Thus we get the stationary point of

G(y1, . . . , yn, µ):

(y∗1 , y
∗
2 , µ

∗) = (

√

1−∑j∈S x2
j

2
,

√

1−∑j∈S x2
j

2
, 0).

– If p = 1, then


1−
∑

j∈S

x
2
j





(

1

2
+

µ

2
√

µ2 +∆′

)

+(n−1)



1−
∑

j∈S

x
2
j





(

1

2
− µ

2
√

µ2 +∆′

)

= 1−
∑

j∈S

x
2
j ,

which is equivalent to

n− 2

2

(

1− µ
√

∆′ + µ2

)

= 0.

Therefore, n = 2 or ∆′ = 0.
1. If ∆′ = 0, then G is bipartite, with S as one of the two color classes and

we obtain the stationary points of the function G(y1, . . . , yn, µ):

(y∗1 , . . . , y
∗
n, µ

∗) ∈ {(
√

1−
∑

j∈S

x2
j , 0, . . . , 0, µ), . . . , (0, 0, . . . ,

√

1−
∑

j∈S

x2
j , µ)}

where µ is arbitrary. But for any of these points F (y∗1 , . . . , y
∗
n) = 0.

2. If ∆′ 6= 0, then n = 2 and we obtain the following two stationary points of
the function G(y1, . . . , yn, µ):

(y∗1 , y
∗
2 , µ

∗) = (

√

1−
∑

j∈S

x2
j

√

1

2
− µ

2
√

µ2 +∆′
,

√

1−
∑

j∈S

x2
j

√

1

2
+

µ

2
√

µ2 +∆′
, µ

∗)

or

= (

√

1−
∑

j∈S

x2
j

√

1

2
+

µ

2
√

µ2 +∆′
,

√

1−
∑

j∈S

x2
j

√

1

2
− µ

2
√

µ2 +∆′
, µ

∗)



8 Milica And̄elić, Domingos M. Cardoso

– If p = 0, then

n



1−
∑

j∈S

x
2
j





(

1

2
− µ

2
√

µ2 +∆′

)

= 1−
∑

j∈S

x
2
j ,

which is equivalent to µ2 = (n−2)2

4(n−1)∆
′. Therefore, we obtain the following sta-

tionary point of the function G(y1, . . . , yn, µ):

(y∗1 , . . . , y
∗
n, µ

∗) = (

√

1−∑j∈S x2
j

n
, . . . ,

√

1−∑j∈S x2
j

n
,
n− 2

2

√

∆′

n− 1
).

According to the above analysis, we may say that the maximum of the function
F (y1, . . . , yn), with n ≥ 2, under the constraint (14), is attained at the point

(y∗1 , . . . , y
∗
n) = (

√

1−∑j∈S x2
j

n
, . . . ,

√

1−∑j∈S x2
j

n
) (17)

and therefore

F (y1, . . . , yn) ≤ F (y∗1 , . . . , y
∗
n) =

√
∆′

√
n− 1(1−

∑

j∈S

x
2
j ). (18)

In case when n = 1 the graph in question is a star Sm and therefore bipartite
with ∆′ = 0, which leads to F (y1, . . . , yn) = 0, for any (y1, . . . , yn) ∈ R

n.

Now, taking into account (6) and (18), we obtain:

λ1 ≤ 2λ1

∑

j∈S

x
2
j +

√
∆′

√
n− 1(1−

∑

j∈S

x
2
j ) (19)

m
λ1 −

√
∆′

√
n− 1 ≤ (2λ1 −

√
∆′

√
n− 1)

∑

j∈S

x
2
j . (20)

As immediate consequence, we have the main result of this section.

Theorem 3 Let G be a connected graph with index λ1 and let S ⊂ V (G) be an
independent set. Let us assume also that ∆′ is the maximum degree of the subgraph
of G induced by S̄ = V (G) \ S, n = |S̄| and 2λ1 −

√
∆′√n− 1 > 0. Then

∑

j∈S

x
2
j ≥ λ1 −

√
∆′√n− 1

2λ1 −
√
∆′√n− 1

. (21)
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4 Characterization of some split graphs

Based on the results obtained in the previous section, we are in a position to
introduce the following result.

Theorem 4 Let G be a connected graph with index λ1 and an independent set
S ⊂ V (G) such that |S̄| = n > 2. Then G is a split graph such that

∑

k∈NG(i)∩S dk

is constant for every i ∈ S̄ if and only if

∑

i∈S

x
2
i =

λ1 − n+ 1

2λ1 − n+ 1
(22)

with λ1 > n− 1.

Proof Using the results obtained in the previous section, we may conclude the
following.

1. The inequality (21) with λ1 > n−1
2 holds as equality if and only if (19) with

λ1 > n−1
2 holds as equality.

2. The inequality (19) with λ1 > n−1
2 holds as equality if and only if the principal

eigenvector of G, x =

(

x

y

)

, is such that y = (y∗1 , . . . , y
∗
n)

T , yTAG[S̄]y =

F (y∗1 , . . . , y
∗
n) and λ1 > n−1

2 .

3. The equality yTAG[S̄]y = F (y∗1 , . . . , y
∗
n) with y = (y∗1 , . . . , y

∗
n)

T and λ1 > n−1
2

holds if and only if both inequalities in (7) hold as equality with y = y∗ and
λ1 > n−1

2 .
4. Both inequalities in (7) with y = y∗ hold as equality and λ1 > n−1

2 if and only
if the entries y∗j are all equal for j ∈ NG(i) ∩ S̄ (as it is the case, by (17)) and
NG(i) ∩ S̄ = S̄ \ {i}, for every i ∈ S̄, i.e., each vertex in S̄ is adjacent to all
vertices in S̄ and λ1 > n−1

2 .
5. The previous statement is equivalent to say that both inequalities in (7) with

y = y∗ hold as equality and λ1 > n−1
2 if and only if the entries y∗j are all equal

for j ∈ NG(i) ∩ S̄ (the point defined in (17)), each vertex in S̄ is adjacent to
all vertices in S̄, i.e., S̄ induces a complete subgraph, and λ1 > n−1

2 .
6. The entries y∗j are all equal for j ∈ NG(i)∩S̄, each vertex in S̄ is adjacent to all

vertices in S̄ and λ1 > n−1
2 if and only if y∗, defined in (17), is the subvector

of the principal eigenvector of G with entries corresponding to the vertices in
S̄ and S̄ induces a complete subgraph (then ∆′ = n− 1 and, as will see later,
λ1 > n−1

2 ).
7. The vector y = y∗ is the subvector of the principal eigenvector of G with entries

corresponding to the vertices in S̄ and S̄ induces a complete subgraph if and
only if G is a split graph such that

∑

k∈NG(i)∩S dk is constant for every i ∈ S̄.
In fact, let us prove this equivalence.
(a) Assume that y = y∗ (as defined in (17)) is the subvector of the principal

eigenvector of G with entries corresponding to the vertices in S̄ and S̄

induces a complete subgraph. Therefore, G is a split graph. Furthermore,

since y∗i =

√

1−∑j∈S x2
j

n
, for i = 1, . . . , n, by the eigenvalue equations,
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∀i ∈ S

λ1xi = di

√

1−∑j∈S x2
j

n
⇔ xi =

di

λ1

√

1−∑j∈S x2
j

n
(23)

and ∀i ∈ S̄

λ1

√

1−∑j∈S x2
j

n
= (n− 1)

√

1−∑j∈S x2
j

n
+

∑

k∈NG(i)∩S

dk

λ1

√

1−∑j∈S x2
j

n
(24)

m

λ1 = n− 1 +
∑

k∈NG(i)∩S

dk

λ1
. (25)

The equality (25) means that
∑

k∈NG(i)∩S dk is constant for every i ∈ S̄

and also that λ1 > n− 1.
(b) Conversely, if G is a split graph such that

∑

k∈NG(i)∩S dk is constant for

every i ∈ S̄, setting y = y∗, the eigenvalue equations (23) and (24) hold,
and then the vector x became defined as an eigenvector of AG. Since its
entries are all positive components, then x is the principal eigenvector of G
associated to the eigenvalue λ1 which is the positive root of the quadratic
polynomial

p(λ) = λ
2 − (n− 1)λ−

∑

k∈NG(i)∩S

dk, (26)

where i is chosen arbitrarily from S̄ and then λ1 > n− 1.
8. Finally, since (21) (with λ1 > n−1

2 ) holds as equality if and only if G is a split
graph (therefore, ∆′ = n − 1 and λ1 > n − 1) such that

∑

k∈NG(i)∩S dk is

constant for every i ∈ S̄, the result follows.

Computing the positive root of the quadratic polynomial (26), it follows that
∀i ∈ S̄

λ1 =
1

2



n− 1 +

√

(n− 1)2 + 4
∑

k∈NG(i)∩S

dk



 .

For the particular case of a complete split graph, denoting the independence
number of G by α(G) and its clique number by ω(G), we may conclude the fol-
lowing corollary.

Corollary 3 Let G be a graph such that α = α(G) and ω = ω(G) > 2 and let
S ⊂ V (G) be a maximum independent set. Then G is a complete split graph if and
only if

∑

j∈S

x
2
j =

1

2
− ω − 1

2
√

(ω − 1)2 + 4ωα
,

where the xj’s are the entries of the principal eigenvector of G corresponding to
the vertices of S.

Proof Since the index of a complete split graphG is λ1 = ω−1
2 +1

2

√

(ω − 1)2 + 4ωα,
applying Theorem 4, the result follows. ⊓⊔
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5 Numerical examples

The graph of order ν = 9 depicted in the Figure 2 has as principal eigenvector:

xT = [0.33610,0.18607,0.24307,0.33610,0.24307,0.42779,0.42779,0.25191,0.43797]

and its spectrum is

σ(G) = {−3.11742,−1.65855,−1.61803,0.00000,0.00000,0.00000,0.61803,1.17772,4.59825}.

Fig. 2 A connected graph G with independence number α(G) = 5

Applying Corollary 2, with k = 0, since x = 0.18607 and x̄ = 0.43797 it follows

α(G) ≤ min{⌊ 1

2x2
⌋, ⌊ν − 1

2x̄2
⌋}

= min{⌊14.44167⌋,⌊6.39336⌋}
= 6.

For k = 1 and k = 2, the obtained upper bounds for the order of k-regular induced
subgraph is 6 and 7, respectively.

Considering the maximum independent set of G, S, since n = ν − α(G) = 4

and ∆′ = 2, then 4.59825 = λ1 >

√
∆′(n−1)

2 =
√
2×3
2 = 1.22474. Therefore, taking

into account that the entries of the principal eigenvector, x of G, corresponding to
the maximal independent set are the first 5 (below denote by x1, . . . , x5), applying
Theorem 4, we obtain

0.378715 =
5
∑

j=1

x
2
j ≥ λ1 −

√

∆′(n− 1)

2λ1 −
√

∆′(n− 1)

=
4.59825−

√
2× 3

2× 4.59825−
√
2× 3

= 0.318476.

The graphH depicted in the Figure 3 has order ν = 6 and principal eigenvector:

xT = [0.35877,0.35877,0.35877,0.42099,0.42099,0.50931].
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The spectrum of this graph is

σ(H) = {−2.48361,−1.28282,0, 0, 0, 3.76644}.

Fig. 3 A connected graph H with independence number α(H) = 3

Applying Corollary 2, with k = 0, since x = 0.35877 and x̄ = 0.50931 it follows

α(H) ≤ min{⌊ 1

2x2
⌋, ⌊ν − 1

2x̄2
⌋}

= min{⌊3.88452⌋,⌊4.07245⌋}
= 3.

It is worth mentioning that, in this case, this upper bound on the stability
number is better than the one obtained by Cvetković in [4] (see also [6, Theorem
3.10.1.]), where α(G) ≤ min{ν−ν+, ν−ν−}, with ν+ and ν− denoting the number
of positive and negative eigenvalues of G respectively. In this particular case, the
bound obtained by Cvetković gives α(H) ≤ 4.

For k = 1 and k = 2, the obtained upper bounds for the order of k regular
induced subgraph is 4, in both cases.

Considering the maximum independent set of G, S, since n = ν − α(H) = 3

and ∆′ = 2, then 3.76644 = λ1 >

√
∆′(n−1)

2 =
√
2×2
2 = 1. Therefore, taking into

account that the entries of the principal eigenvector x of H, corresponding to the
maximal independent set are the first 3 (below denote by x1, x2, x3), applying
Theorem 4, we obtain

0.38615 =

3
∑

j=1

x
2
j ≥ λ1 −

√

∆′(n− 1)

2λ1 −
√

∆′(n− 1)

= 0.31926.
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