686 research outputs found

    System of Systems conceptual design methodology for space exploration

    Get PDF
    The scope of the research is to identify and develop a design methodology for System-of-System (a set of elements and sub-elements able to interact and cooperate in order to complete a mission), based on models, methods and tools, to support the decision makers during the space exploration scenarios design and evaluation activity in line with the concurrent design philosophy. Considering all combinations of system parameters (such as crew size, orbits, launchers, spacecraft, ground and space infrastructures), a large number of mission concept options are possible, even though not all of them are optimal or even feasible. The design methodology is particularly useful in the first phases of the design process (Phase 0 and A) to choose rationally and objectively the best mission concepts that ensure the higher probability of mission success in compliance with the high level requirements deriving from the “user needs”. The first phases of the project are particularly critical for the success of the entire mission because the results of this activity are the starting point of the more costly detailed design phases. Thus, any criticality in the baseline design will involve inevitably into undesirable and costly radical system redesigns during the advanced design phases. For this reason, it is important to develop reliable mathematical models that allow prediction of the system performances notwithstanding the poorly defined environment of very high complexity. In conjunction with the development of the design methodology for system-of-systems and in support of it, a software tool has been developed. The tool has been developed into Matlab environment and provides users with a useful graphical interface. The tool integrates the model of the mission concept, the models of the space elements at system and subsystem level, the cost-effectiveness model or value, the sensitivity and multi-objective optimization analysis. The tool supports users to find a system design solution in compliance with requirements and constraints, such as mass budgets and costs, and provides them with information about cost-effectiveness of the mission. The developed methodology has been applied for the design of several space elements (Man Tended Free Flyer, Cargo Logistic Vehicle, Rover Locomotion System) and several mission scenarios (Moon surface infrastructure support, Cis-Lunar infrastructure delivering, Cis-Lunar infrastructure logistic support), in order to assess advantages and disadvantages of the proposed method. The results of the design activity have been discussed and accepted by the European Space Agency (ESA) and have also been compared and presented to the scientific community. Finally, in a particular case, the study of the locomotion system of a lunar rover, the results of the methodology have been verified through the production and testing of the same system

    Orthogonal-Array based Design Methodology for Complex, Coupled Space Systems

    Get PDF
    The process of designing a complex system, formed by many elements and sub-elements interacting between each other, is usually completed at a system level and in the preliminary phases in two major steps: design-space exploration and optimization. In a classical approach, especially in a company environment, the two steps are usually performed together, by experts of the field inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. To support designers and decision makers during the design phases of this kind of complex systems, and to enable early discovery of emergent behaviours arising from interactions between the various elements being designed, the authors implemented a parametric methodology for the design-space exploration and optimization. The parametric technique is based on the utilization of a particular type of matrix design of experiments, the orthogonal arrays. Through successive design iterations with orthogonal arrays, the optimal solution is reached with a reduced effort if compared to more computationally-intense techniques, providing sensitivity and robustness information. The paper describes the design methodology in detail providing an application example that is the design of a human mission to support a lunar base

    TRIBUNALE DELLA LIBERTA'

    Get PDF
    PROV

    SET, A SCENARIO EVALUATOR TOOL FOR SUPPORTING SPACE-EXPLORATION MISSION-ARCHITECTURE DESIGN

    Get PDF
    The design of space-exploration missions begins with a mission statement that defines the ultimate goals of the mission itself. The mission-architecture defines, instead, how the mission will work in practice, and encompasses all the elements that will take part in it. It includes such issues as the synergies of manned and robotic resources, mission control, and the mission timeline. The mission-architecture design activity is an iterative process in general aimed at the maximization of the cost effectiveness (or value) of the mission and minimization of costs. This is performed by successive comparisons and evaluation of the alternative generated mission architectures. The Scenario Evaluator Tool (SET) is conceived to support the engineering team in the framework of the space mission design process. In particular, SET is a simulation software tool that allows building mission architectures with a significant reduction of development time and computational effort. The software allows the characterization, the comparison, and optimization of exploration scenarios and building blocks through a user friendly graphical interface. Each mission-architecture is characterized and evaluated on the basis of the mass budget of the building blocks, cost index and exploration capabilities. SET is general enough to allow the design of several space exploration scenarios for Gap-analysis studies (flexibility). Further, it allows the users to introduce new model libraries (expandability). This paper describes the main features and the potentialities of the simulation software. To show the working principle of SET, a hypothetical human space-exploration mission scenario has been developed and implemented. The results has been accomplished in the framework of STEPS (Systems and Technologies for the ExPloration of Space), which is a research project co-financed by Piedmont Region (Italy), firms and universities of the Piedmont Aerospace District

    Chemoenzymatic Synthesis and Some Biological Properties of O-phosphoryl Derivatives of (E)-resveratrol

    Get PDF
    3- O-, 3,5-di- O- and 4′- O-phosphoryl derivatives of ( E)-resveratrol have been obtained following a chemoenzymatic strategy. Variedly acylated resveratrol derivatives have been obtained first by exploiting regioselective properties of Pseudomonas cepacea or Candida antarctica lipases in organic solvents. Each acyl-resveratrol was then phosphorylated by the phosphoramidite chemistry protocol and in sequence freed of protective groups, affording the desired O-phosphoryl derivative. Following UV-absorption spectroscopic investigation on the interaction of the newly synthesized compounds with DNA, 4′- O-phosphorylresveratrol exhibited the best binding affinity. As a result of cytotoxicity tests, 3- O-phosphorylresveratrol was more active than resveratrol against DU 145 prostate cancer cells

    Hyperforin enhances heme oxygenase-1 expression triggering lipid peroxidation in BRAF-mutated melanoma cells and hampers the expression of pro-metastatic markers

    Get PDF
    Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells

    Hydrogen induced optically-active defects in silicon photonic nanocavities

    Get PDF
    This work was supported by Era-NET NanoSci LECSIN project coordinated by F. Priolo, by the Italian Ministry of University and Research, FIRB contract No. RBAP06L4S5 and by the EPSRC UKSp project. Partial financial support by the Norwegian Research Council is also acknowledged.We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.Publisher PDFPeer reviewe

    Potential Anticancer Activity against Human Epithelial Cancer Cells of Peumus Boldus Leaf Extract

    Get PDF
    The potential in vitro antineoplastic effect has been studied of a methanolic extract of leaves of Peumus boldus Molina (Monimiaceae) on two human cancer epithelial cell lines, DU-145 cells (androgen-insensitive prostate cancer cells) and KB cells (oral squamous carcinoma cells). Our findings show that this extract exhibited comparable effects on the cancer cells examined as judged by IC50 values (5.07±0.4 μg/mL and 5.28±0.5 μg/mL in DU-145 and KB cells, respectively). In addition, with respect to genomic DNA damage, determined by Comet assay, the results obtained show a high fragmentation of DNA, not correlated to lactic dehydrogenase (LDH) release, a marker of membrane breakdown, in both cell lines treated with the extract at 5–20 μg/mL concentrations. Taken together, our experimental evidence may justify further investigation of the chemopreventive and chemotherapeutic potential of this natural drug
    • …
    corecore