78 research outputs found

    The Calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design

    Get PDF
    The apicomplexan protozoan parasites include the causative agents of animal and human diseases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics. In this review, we will summarize structure-based strategies, recent successes and future directions in the pursuit of specific and selective inhibitors of T. gondii CDPK1

    Master planned estates : parish or panacea?

    Full text link
    Master planned estates in Australia emerge from two major directions: one aims to address the inadequacies of 1970s suburbanisation and the other comes from governments and developers seeking to realise alternatives. The very idea of master planning has a longer history, one that arguably dates back to 19th-century Utopian Socialism and Baron Haussmann\u27s redesign of Paris, which involved a large-scale, comprehensive alternative vision realised by a sanctioned authority. Master planning thereby partakes of both utopianism and authoritarianism. These associations have infused the discussion and construction of Australian master planned estates rendering them both pariah and panacea. But research and my own experience suggests that they are far more panaceas than pariahs

    Systematic model identification and optimization-based active polymorphic control of crystallization processes

    Get PDF
    Polymorphism is an important issue in industrial crystallization, since polymorphs of the same compound can present very different properties, such as solubility, melting point or density, influencing considerably the manufacturability and bioavailability of the final product. This work proposes a model-based active polymorphic control strategy that allows obtaining large crystals of the stable polymorph at the end of a batch crystallization process, even in the case of erroneous seeding or in situ nucleation of a mixture of both the stable and metastable forms. A novel systematic experimental design was applied to estimate the kinetic parameters of dissolution, growth and secondary nucleation of the stable and metastable polymorphs of the model compound (ortho-aminobenzoic acid, OABA). Such experimental approach allows the determination of the studied kinetics without any correlation between parameters during the estimation, and without the need of off-line measurements of the crystal size distribution during the experiments. The estimated kinetic parameters were used to build a population balance model for the calculation of the optimal temperature profile needed, during a batch cooling crystallization process, for the (i) elimination of the metastable form crystals nucleated in situ or erroneously seeded and the (ii) maximisation of the size of the crystals of the stable polymorph obtained at the end of the batch process

    Photoscience

    No full text

    How to Stabilize Protein: Stability Screens for Thermal Shift Assays and Nano Differential Scanning Fluorimetry in the Virus-X Project

    Get PDF
    The Horizon2020 Virus-X project was established in 2015 to explore the virosphere of selected extreme biotopes and discover novel viral proteins. To evaluate the potential biotechnical value of these proteins, the analysis of protein structures and functions is a central challenge in this program. The stability of protein sample is essential to provide meaningful assay results and increase the crystallizability of the targets. The thermal shift assay (TSA), a fluorescence-based technique, is established as a popular method for optimizing the conditions for protein stability in high-throughput. In TSAs, the employed fluorophores are extrinsic, environmentally-sensitive dyes. An alternative, similar technique is nano differential scanning fluorimetry (nanoDSF), which relies on protein native fluorescence. We present here a novel osmolyte screen, a 96-condition screen of organic additives designed to guide crystallization trials through preliminary TSA experiments. Together with previously-developed pH and salt screens, the set of three screens provides a comprehensive analysis of protein stability in a wide range of buffer systems and additives. The utility of the screens is demonstrated in the TSA and nanoDSF analysis of lysozyme and Protein X, a target protein of the Virus-X project

    A virtual inspection framework for precision manufacturing of aerofoil components

    Get PDF
    AbstractThe finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal design model. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable and the procedures for registration and virtual inspection are computationally efficient, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry
    • …
    corecore