450 research outputs found

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsβ€”the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57Β·8% (95% CI 56Β·6–58Β·8) of global deaths and 41Β·2% (39Β·8–42Β·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211Β·8 million [192Β·7 million to 231Β·1 million] global DALYs), smoking (148Β·6 million [134Β·2 million to 163Β·1 million]), high fasting plasma glucose (143Β·1 million [125Β·1 million to 163Β·5 million]), high BMI (120Β·1 million [83Β·8 million to 158Β·4 million]), childhood undernutrition (113Β·3 million [103Β·9 million to 123Β·4 million]), ambient particulate matter (103Β·1 million [90Β·8 million to 115Β·1 million]), high total cholesterol (88Β·7 million [74Β·6 million to 105Β·7 million]), household air pollution (85Β·6 million [66Β·7 million to 106Β·1 million]), alcohol use (85Β·0 million [77Β·2 million to 93Β·0 million]), and diets high in sodium (83Β·0 million [49Β·3 million to 127Β·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension

    Get PDF
    BACKGROUND: There is increasing interest in using extracellular vesicle-derived microRNAs (miRNAs) as biomarkers in renal dysfunction and injury. Preliminary evidence indicates that miRNAs regulate the progression of glomerular disease. Indeed, exosomes from the renal system have provided novel evidence in the clinical setting of albuminuria. Thus, the aim of this study was to quantify the urinary miRNAs present in exosome and microvesicles (MVs), and to assess their association with the presence of increased urinary albumin excretion in essential hypertension. METHODS: Exosomes were collected from urine specimens from a cohort of hypertensive patients with (n = 24) or without albuminuria (n = 28), and from 20 healthy volunteers as a control group. Urinary exosomes were phenotyped by Western blot, tunable resistive pulse sensing, and electronic microscopy. Expression of miR-146a and miR-335* was analysed by qRT-PCR and any associations between albuminuria and exosomal miRNAs were analysed. RESULTS: Urinary miRNAs are highly enriched in exosome subpopulations compared to MVs, both in patients with or without increased albuminuria (p < 0.001), but not in the control group. High albuminuria was associated with 2.5-fold less miR-146a in exosomes (p = 0.017), whereas miR-146a levels in MV did not change. In addition, exosome miR-146a levels were inversely associated with albuminuria (r = 0.65, p < 0.0001), and discriminated the presence of urinary albumin excretion presence [area under the curve = 0.80, 95% confidence interval: 0.66-0.95; p = 0.0013]. CONCLUSIONS: Our results indicate that miRNAs were enriched in the urinary exosome subpopulation in hypertensive patients and that low miR-146a expression in exosomes was associated with the presence of albuminuria. Thus, urinary exosome miR-146a may be a potentially useful tool for studying early renal injury in hypertension

    Discrimination of Timbre in Early Auditory Responses of the Human Brain

    Get PDF
    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre

    The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use.</p> <p>Methods</p> <p>The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an <it>in vitro </it>neurite growth assay and an <it>in vivo </it>neuronal injury model, spinal cord contusion injury, were employed.</p> <p>Results</p> <p>ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury.</p> <p>Conclusions</p> <p>Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.</p

    Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms

    Get PDF
    BACKGROUND: Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. METHODS AND FINDINGS: We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. CONCLUSIONS: We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis

    Effect of early and current Helicobacter pylori infection on the risk of anaemia in 6.5-year-old Ethiopian children

    Get PDF
    Background: Epidemiological and clinical studies in high income countries have suggested that Helicobacter pylori (H. pylori) may cause anaemia, but evidence is lacking from low income countries.We examined associations between H. pylori infection in early childhood and anaemia at the age of 6.5 years in an Ethiopian birth cohort. Methods: In 2011/12, 856 children (85.1 % of the 1006 original singletons in a population-based birth cohort) were followed up at age six and half. An interviewer-led questionnaire administered to mothers provided information on demographic and lifestyle variables. Haemoglobin level and red cell indices were examined using an automated haematological analyzer (Cell Dyn 1800, Abbott, USA), and stool samples analyzed for H. pylori antigen. The independent effects of H. pylori infection (measured at age 3.5 and 6.5 years) on anaemia, haemoglobin level, and red cell indices (measured at age 6.5 years) were determined using multiple logistic and linear regression. Results: The prevalence of anemia was 34.8 % (257/739), and the mean (SD) haemoglobin concentration was 11.8 (1.1) gm/dl. Current H. pylori infection at age 6.5 years was positively, though not significantly related to prevalence of anaemia (adjusted OR, 95 % CI, 1.15; 0.69, 1.93, p = 0.59). Any H. pylori infection up to age 6.5 years was significantly associated with an increased risk of anaemia at age 6.5 (adjusted OR, 95 % CI, 1.68; 1.22, 2.32, p = 0.01). A significant reduction in haemoglobin concentration and red cell indices was also observed among children who had any H. pylori infection up to age 6.5 (Hb adjusted Ξ² = βˆ’0.19, 95 % CI, βˆ’0.35 to βˆ’0.03, p = 0.01; MCV adjusted Ξ² = βˆ’2.22, 95 % CI, βˆ’3.43 to βˆ’1.01, p = 0.01; MCH adjusted Ξ² = βˆ’0.63, 95 % CI, βˆ’1.15 to - 0.12, p = 0.01; and MCHC adjusted Ξ² = βˆ’0.67, 95 % CI, βˆ’1.21 to βˆ’0.14, p = 0.01), respectively. Conclusion: This study provides further evidence from a low income country that any H. pylori infection up to age 6.5 is associated with higher prevalence of anaemia, and reduction of haemoglobin level and red cell indices at age 6.5

    Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study

    Get PDF
    BACKGROUND: Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR). AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE). Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. METHODS: The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC) was stably transfected with AhR cDNA and the established cell line was named N2a-RΞ±. The activation of exogenous AhR in N2a-RΞ± cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-RΞ± based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH). RESULTS: N2a-RΞ± cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-RΞ± cells exhibited two significant functional features. Morphologically, N2a-RΞ± cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-RΞ± cells expressed tyrosine hydroxylase (TH) mRNA as a functional marker of catecholaminergic neurotransmitter production. Thus, exogenous AhR induced catecholaminergic differentiation in N2a-RΞ± cells. CONCLUSION: The excessive activation of AhR resulted in neural differentiation of Neuro2a cells. This result revealed that dioxins may affect the nervous system through the AhR-signaling pathway. Activated AhR may disrupt the strictly regulated brain formation with irregular differentiation occurring rather than cell death

    Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency

    Get PDF
    As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant
    • …
    corecore