728 research outputs found
Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy
The aim of the present investigation was to evaluate whether routinely frozen biopsies of human skeletal muscle may be suitable for morphological and immunocytochemical analyses at transmission electron microscopy. The fixation/embedding protocols we successfully used for decades to process fresh mammalian tissues have been applied to frozen muscle biopsies stored for one to four years in liquid nitrogen. After 2.5% glutaraldehyde -2% paraformaldehyde - 1% OsO4 fixation and embedding in epoxy resin, the ultrastructural morphology of myofibres and satellite cells as well as of their organelles and inclusions proved to be well preserved. As expected, after 4% paraformaldehyde - 0.5% glutaraldehyde fixation and embedding in LR White resin, the morphology of membrane-bounded organelles was relatively poor, although myofibrillar and sarcomeric organization was still recognizable. On the contrary, the myonuclei were excellently preserved and, after conventional staining with uranyl acetate, showed an EDTA-like effect, i.e. the bleaching of condensed chromatin, which allows the visualization of RNP-containing structures. These samples proved to be suitable for immunocytochemical analyses of both cytoskeletal and nuclear components, whereas the poor mitochondrial preservation makes unreliable any in situ investigation on these organelles
Measurements and optimization of the light yield of a TeO crystal
Bolometers have proven to be good instruments to search for rare processes
because of their excellent energy resolution and their extremely low intrinsic
background. In this kind of detectors, the capability of discriminating alpha
particles from electrons represents an important aspect for the background
reduction. One possibility for obtaining such a discrimination is provided by
the detection of the Cherenkov light which, at the low energies of the natural
radioactivity, is only emitted by electrons. This paper describes the method
developed to evaluate the amount of light produced by a crystal of TeO when
hit by a 511 keV photon. The experimental measurements and the results of a
detailed simulation of the crystal and the readout system are shown and
compared. A light yield of about 52 Cherenkov photons per deposited MeV was
measured. The effect of wrapping the crystal with a PTFE layer, with the aim of
maximizing the light collection, is also presented
New application of superconductors: high sensitivity cryogenic light detectors
In this paper we describe the current status of the CALDER project, which is
developing ultra-sensitive light detectors based on superconductors for
cryogenic applications. When we apply an AC current to a superconductor, the
Cooper pairs oscillate and acquire kinetic inductance, that can be measured by
inserting the superconductor in a LC circuit with high merit factor.
Interactions in the superconductor can break the Cooper pairs, causing sizable
variations in the kinetic inductance and, thus, in the response of the LC
circuit. The continuous monitoring of the amplitude and frequency modulation
allows to reconstruct the incident energy with excellent sensitivity. This
concept is at the basis of Kinetic Inductance Detectors (KIDs), that are
characterized by natural aptitude to multiplexed read-out (several sensors can
be tuned to different resonant frequencies and coupled to the same line),
resolution of few eV, stable behavior over a wide temperature range, and ease
in fabrication. We present the results obtained by the CALDER collaboration
with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the
performances of the first prototypes are already competitive with those of
other commonly used light detectors, and we discuss the strategies for a
further improvement
Characterization of the KID-Based Light Detectors of CALDER
The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution
(CALDER) project is the development of light detectors with active area of
cm and noise energy resolution smaller than 20 eV RMS,
implementing phonon-mediated kinetic inductance detectors. The detectors are
developed to improve the background suppression in large-mass bolometric
experiments such as CUORE, via the double read-out of the light and the heat
released by particles interacting in the bolometers. In this work, we present
the characterization of the first light detectors developed by CALDER. We
describe the analysis tools to evaluate the resonator parameters (resonant
frequency and quality factors) taking into account simultaneously all the
resonance distortions introduced by the read-out chain (as the feed-line
impedance and its mismatch) and by the power stored in the resonator itself. We
detail the method for the selection of the optimal point for the detector
operation (maximizing the signal-to-noise ratio). Finally, we present the
response of the detector to optical pulses in the energy range of 0-30 keV
Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection
The development of sensitive cryogenic light detectors is of primary interest
for bolometric experiments searching for rare events like dark matter
interactions or neutrino-less double beta decay. Thanks to their good energy
resolution and the natural multiplexed read-out, Kinetic Inductance Detectors
(KIDs) are particularly suitable for this purpose. To efficiently couple
KIDs-based light detectors to the large crystals used by the most advanced
bolometric detectors, active surfaces of several cm are needed. For this
reason, we are developing phonon-mediated detectors. In this paper we present
the results obtained with a prototype consisting of four 40 nm thick aluminum
resonators patterned on a 22 cm silicon chip, and calibrated with
optical pulses and X-rays. The detector features a noise resolution
eV and an (182) efficiency.Comment: 5 pages, 5 figure
Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence
Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder caused by the expansion of the tetranucleotidic repeat (CCTG)n in the first intron of the Zinc Finger Protein-9 gene. In DM2 tissues, the expanded mutant transcripts accumulate in nuclear focal aggregates where splicing factors are sequestered, thus affecting mRNA processing. Interestingly, the ultrastructural alterations in the splicing machinery observed in the myonuclei of DM2 skeletal muscles are reminiscent of the nuclear changes occurring in age-related muscle atrophy. Here, we investigated in vitro structural and functional features of satellite cell-derived myoblasts from biceps brachii, in the attempt to investigate cell senescence indices in DM2 patients by ultrastructural cytochemistry. We observed that in satellite cell-derived DM2 myoblasts, cell-senescence alterations such as cytoplasmic vacuolization, reduction of the proteosynthetic apparatus, accumulation of heterochromatin and impairment of the pre-mRNA maturation pathways occur earlier than in myoblasts from healthy patients. These results, together with preliminary in vitro observations on the early onset of defective structural features in DM2 myoblast derived-myotubes, suggest that the regeneration capability of DM2 satellite cells may be impaired, thus contributing to the muscular dystrophy in DM2 patients
High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out
The development of wide-area cryogenic light detectors with good energy
resolution is one of the priorities of next generation bolometric experiments
searching for rare interactions, as the simultaneous read-out of the light and
heat signals enables background suppression through particle identification.
Among the proposed technological approaches for the phonon sensor, the
naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their
excellent intrinsic energy resolution and reproducibility. To satisfy the large
surface requirement (several cm) KIDs are deposited on an insulating
substrate that converts the impinging photons into phonons. A fraction of
phonons is absorbed by the KID, producing a signal proportional to the energy
of the original photons. The potential of this technique was proved by the
CALDER project, that reached a baseline resolution of 1547 eV RMS by
sampling a 22 cm Silicon substrate with 4 Aluminum KIDs. In this
paper we present a prototype of Aluminum KID with improved geometry and quality
factor. The design improvement, as well as the combined analysis of amplitude
and phase signals, allowed to reach a baseline resolution of 824 eV by
sampling the same substrate with a single Aluminum KID
CALDER - Neutrinoless double-beta decay identification in TeO bolometers with kinetic inductance detectors
Next-generation experiments searching for neutrinoless double-beta decay must
be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of
988 TeO bolometers being commissioned at Laboratori Nazionali del Gran
Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that
can be improved by removing the background from radioactivity. This is
possible if, in coincidence with the heat release in a bolometer, the Cherenkov
light emitted by the signal is detected. The amount of light detected
is so far limited to only 100 eV, requiring low-noise cryogenic light
detectors. The CALDER project (Cryogenic wide-Area Light Detectors with
Excellent Resolution) aims at developing a small prototype experiment
consisting of TeO bolometers coupled to new light detectors based on
kinetic inductance detectors. The R&D is focused on the light detectors that
could be implemented in a next-generation neutrinoless double-beta decay
experiment.Comment: 8 pages, 3 figures, added reference to first result
TeO bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double beta decay experiments
CUORE, an array of 988 TeO bolometers, is about to be one of the most
sensitive experiments searching for neutrinoless double-beta decay. Its
sensitivity could be further improved by removing the background from
radioactivity. A few years ago it has been pointed out that the signal from
s can be tagged by detecting the emitted Cherenkov light, which is not
produced by s. In this paper we confirm this possibility. For the first
time we measured the Cherenkov light emitted by a CUORE crystal, and found it
to be 100 eV at the -value of the decay. To completely reject the
background, we compute that one needs light detectors with baseline noise below
20 eV RMS, a value which is 3-4 times smaller than the average noise of the
bolometric light detectors we are using. We point out that an improved light
detector technology must be developed to obtain TeO bolometric experiments
able to probe the inverted hierarchy of neutrino masses.Comment: 5 pages, 4 figures. Added referee correction
- …