The development of wide-area cryogenic light detectors with good energy
resolution is one of the priorities of next generation bolometric experiments
searching for rare interactions, as the simultaneous read-out of the light and
heat signals enables background suppression through particle identification.
Among the proposed technological approaches for the phonon sensor, the
naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their
excellent intrinsic energy resolution and reproducibility. To satisfy the large
surface requirement (several cm2) KIDs are deposited on an insulating
substrate that converts the impinging photons into phonons. A fraction of
phonons is absorbed by the KID, producing a signal proportional to the energy
of the original photons. The potential of this technique was proved by the
CALDER project, that reached a baseline resolution of 154±7 eV RMS by
sampling a 2×2 cm2 Silicon substrate with 4 Aluminum KIDs. In this
paper we present a prototype of Aluminum KID with improved geometry and quality
factor. The design improvement, as well as the combined analysis of amplitude
and phase signals, allowed to reach a baseline resolution of 82±4 eV by
sampling the same substrate with a single Aluminum KID