48 research outputs found

    Gut microbiota, innate immune pathways, and inflammatory control mechanisms in patients with major depressive disorder

    Get PDF
    Although alterations in the gut microbiota have been linked to the pathophysiology of major depressive disorder (MDD), including through effects on the immune response, our understanding is deficient about the straight connection patterns among microbiota and MDD in patients. Male and female MDD patients were recruited: 46 patients with a current active MDD (a-MDD) and 22 in remission or with only mild symptoms (r-MDD). Forty-five healthy controls (HC) were also recruited. Psychopathological states were assessed, and fecal and blood samples were collected. Results indicated that the inducible nitric oxide synthase expression was higher in MDD patients compared with HC and the oxidative stress levels were greater in the a-MDD group. Furthermore, the lipopolysaccharide (an indirect marker of bacterial translocation) was higher in a-MDD patients compared with the other groups. Fecal samples did not cluster according to the presence or the absence of MDD. There were bacterial genera whose relative abundance was altered in MDD: Bilophila (2-fold) and Alistipes (1.5-fold) were higher, while Anaerostipes (1.5-fold) and Dialister (15-fold) were lower in MDD patients compared with HC. Patients with a-MDD presented higher relative abundance of Alistipes and Anaerostipes (1.5-fold) and a complete depletion of Dialister compared with HC. Patients with r-MDD presented higher abundance of Bilophila (2.5-fold) compared with HC. Thus, the abundance of bacterial genera and some immune pathways, both with potential implications in the pathophysiology of depression, appear to be altered in MDD, with the most noticeable changes occurring in patients with the worse clinical condition, the a-MDD group. © 2021, The Author(s)

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    Get PDF
    Introduction: Preoperative treatment and adequate surgery increase local control in rectal cancer. However, modalities and indications for neoadjuvant treatment may be controversial. Aim of this study was to assess the trends of preoperative treatment and outcomes in patients with rectal cancer included in the Rectal Cancer Registry of the Spanish Associations of Surgeons. Method: This is a STROBE-compliant retrospective analysis of a prospective database. All patients operated on with curative intention included in the Rectal Cancer Registry were included. Analyses were performed to compare the use of neoadjuvant/adjuvant treatment in three timeframes: I)2006–2009; II)2010–2013; III)2014–2017. Survival analyses were run for 3-year survival in timeframes I-II. Results: Out of 14, 391 patients, 8871 (61.6%) received neoadjuvant treatment. Long-course chemo/radiotherapy was the most used approach (79.9%), followed by short-course radiotherapy ± chemotherapy (7.6%). The use of neoadjuvant treatment for cancer of the upper third (15-11 cm) increased over time (31.5%vs 34.5%vs 38.6%, p = 0.0018). The complete regression rate slightly increased over time (15.6% vs 16% vs 18.5%; p = 0.0093); the proportion of patients with involved circumferential resection margins (CRM) went down from 8.2% to 7.3%and 5.5% (p = 0.0004). Neoadjuvant treatment significantly decreased positive CRM in lower third tumors (OR 0.71, 0.59–0.87, Cochrane-Mantel-Haenszel P = 0.0008). Most ypN0 patients also received adjuvant therapy. In MR-defined stage III patients, preoperative treatment was associated with significantly longer local-recurrence-free survival (p < 0.0001), and cancer-specific survival (p < 0.0001). The survival benefit was smaller in upper third cancers. Conclusion: There was an increasing trend and a potential overuse of neoadjuvant treatment in cancer of the upper rectum. Most ypN0 patients received postoperative treatment. Involvement of CRM in lower third tumors was reduced after neoadjuvant treatment. Stage III and MRcN + benefited the most

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100&nbsp;PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750&nbsp;m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500&nbsp;m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays

    Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

    Get PDF
    Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60o using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

    Get PDF
    We present a method based on the use of Recurrent Neural Networks to extract the muon component from the time traces registered with water-Cherenkov detector (WCD) stations of the Surface Detector of the Pierre Auger Observatory. The design of the WCDs does not allow to separate the contribution of muons to the time traces obtained from the WCDs from those of photons, electrons and positrons for all events. Separating the muon and electromagnetic components is crucial for the determination of the nature of the primary cosmic rays and properties of the hadronic interactions at ultra-high energies. We trained a neural network to extract the muon and the electromagnetic components from the WCD traces using a large set of simulated air showers, with around 450 000 simulated events. For training and evaluating the performance of the neural network, simulated events with energies between 10^18.5 eV and 10^20 eV and zenith angles below 60 degrees were used. We also study the performance of this method on experimental data of the Pierre Auger Observatory and show that our predicted muon lateral distributions agree with the parameterizations obtained by the AGASA collaboration

    Studies of the UHECR Mass Composition and Hadronic Interactions with the FD and SD of the Pierre Auger Observatory

    Get PDF
    With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 10[sup]17.2 − 10[sup]19.6 eV and on the measurements of the proton-air cross section for energies up to 10[sup]18.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 10[sup]20 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties due to uncertainties in the description of hadronic interactions at ultra-high energies. We discuss this problem with respect to the properties of the muonic component of extensive air-showers as derived from the SD data

    Synthesis of high ion exchange zeolites from coal fly ash

    No full text
    This study focuses on the synthesis at a pilot plant scale of zeolitic material obtained from the coal fly ashes of the Teruel and Narcea power plants in Spain. After the optimisation of the synthesis parameters at laboratory scale, the Teruel and Narcea fly ashes were selected as low and high glass fly ashes. The pilot plant scale experiments were carried out in a 10 m3 reactor of Clariant SA (Barcelona, Spain). The results allowed obtaining 1.1 and 2.2 tonnes of zeolitic material with 40 and 55% of NaP1 content, in two single batch experiments of 24 and 8 hours, for Teruel and Narcea fly ashes, respectively. The cation exchange capacities (CEC) of the final product reached 2.0 and 2.7 meq g-1 for Teruel and Narcea zeolitic material, respectively, which are very close to the usual values reached by the high quality natural zeolitic products. Finally, with the aim of testing possible applications of the commercial NaP1-IQE and pilot plant NaP1-Narcea zeolitic products in water decontamination, efficiency for metal uptake from waste waters from electroplating baths was investigate
    corecore